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PREFACE

This book was written in honour of Noel Baker following his sudden death
in 2001. It comprises a collection of articles written by friends, colleagues
and former students of Noel. In particular, we are delighted that Noel’s MSc
supervisor and long-time friend, George Szekeres, was able to contribute a
paper to this volume — he sadly died before the book was published.

All of these articles deal with topics that interested Noel and, in most cases,
they are in areas where Noel’s own work has been very influential. Several of
the papers are survey articles that we hope will be a valuable addition to the
literature. There are also new results that Noel would have been delighted
to have seen. Most of the papers deal with the iteration of transcendental
meromorphic functions — the field in which Noel was pre-eminent and in
which he carried out much of the pioneering work — and there are also
some papers in closely related topics that he would have enjoyed. As this
volume shows, much of the recent work in complex dynamics (as the subject
of iteration theory is now called) builds on ideas and techniques that Noel
introduced and that will continue to be used by all those who work in this
field. We hope that this book will be a fitting memorial to a man who inspired
so many of us.

Phil Rippon and Gwyneth Stallard

Department of Mathematics and Statistics
The Open University
Milton Keynes MK7 6AA

vii



INTRODUCTION

In this introduction, we summarise the mathematical career of Noel Baker
and indicate how the papers in this volume relate to his work. Much of
the material is taken from the obituary of Noel Baker that appeared in the
Bulletin of the London Mathematical Society [17).

Noel Baker was born on 10 August 1932 and died, of a heart attack, on 20
May 2001. He grew up in Australia and was first introduced to the theory
of iteration by his MSc supervisor, George Szekeres, who suggested that he
work on the functional equation

f(f(2)) = F(2),

where f and F are analytic functions. In his first mathematical paper (1),
Noel used the theory of iteration of analytic functions, which had been devel-
oped principally by Fatou and Julia and which was not well known at that
time. He used this theory to show, amongst other things, that if F' belongs
to a certain class of entire functions, which includes the exponential function,
then the above equation has no entire solution. This first paper also contains
examples that were constructed using Wiman-Valiron theory. Throughout his
career Noel was to find ever more techniques from classical complex analysis
that can usefully be applied to iteration theory.

In 1955 Noel won a German government scholarship to the University of
Tiibingen, where he worked under Hellmuth Kneser. Noel’s doctoral thesis,
published in (2), continued his study of functional equations. From 1957 to
1959, Noel taught mathematics at the University of Alberta in Edmonton,
Canada. In 1959 he moved to Imperial College London, where he remained
until retirement in 1997.

In his research, Noel worked on many problems in complex analysis and had
a wide range of collaborators, but iteration theory, his great love, was for
many years a lone interest. However, when the subject was reborn around
1980, partly as a result of the advent of accessible computer graphics, it
became clear to the new adherents that Noel had for many years been quietly
and carefully completing the foundations begun earlier in the century by the
French mathematicians Pierre Fatou and Gaston Julia. He had also pointed
the way towards many future developments, both by proving new results and
by posing challenging problems. In the explosion of research on iteration
theory that took place in the subsequent years, many of the papers published
on iteration made reference to Noel’s work and he received many invitations
to speak at international conferences on iteration. At these he would often

appear reserved, much preferring to let others speak about the latest work,
ix



X INTRODUCTION

even though he was the acknowledged authority on many matters, and the
person whose judgement about the validity of a new proof was always sought.
Noel continued his research after his retirement and one of his last papers was
dedicated to George Szekeres on the occasion of the latter’s 90th birthday.

Noel’s early work on functional equations led him to consider problems about
periodic points, which play a very important role in complex dynamics. It
was already known that for an entire function there must be infinitely many
periodic points of period p, for all p > 2, but Noel considered the unsolved
problem of the existence of periodic points of a given ezact period. He showed
in (6) that for all non-linear entire functions there exist periodic points of
exact period p, for all p with at most one exception; for example, f(z) = z+e*
has no fixed points. In a later paper (13) Noel showed that for a polynomial
the only possible exceptional value in this result is p = 2, the corresponding
exceptional functions being f(z) = 22 — 2 and other quadratics ‘similar’ to
this one. He also conjectured that for a transcendental entire function the
only possible exceptional value is p = 1, and this was proved by Bergweiler [2].

‘We now describe the origins of complex dynamics. Let f be a rational function
of degree at least 2 or a transcendental entire function. The set of points near
which the sequence of iterates f™ forms a normal family is called the Fatou set
F(f) and its complement is called the Julia set J(f). Roughly speaking, the
dynamics are stable on the Fatou set and chaotic on the Julia set. Also, the
Julia set often exhibits great topological complexity as well as ‘self-similarity’;
for example, the paper in this volume by Devaney et al discusses a family of
rational functions whose Julia sets in some cases contain Cantor sets of curves
and in other cases contain Sierpinski curves.

The fundamental properties of the sets F'(f) and J(f) were first established
for rational functions in [13] and [8], and for transcendental entire functions
in [9]. In the last paper, Fatou studied the iteration of transcendental entire
functions in some detail, giving examples that pointed to significant differ-
ences to the theory that had been developed for rational functions. He asked
the following fundamental questions about a transcendental entire function f:

1. Are the repelling periodic points of f dense in J(f)?

2. Are there examples where J(f) = C? In particular, is this true for
f(z) =e*?

3. Can J(f) be totally disconnected?

4. Must J(f) contain infinitely many unbounded analytic curves, at each
point of which f* — oo?

Question 1 is of great theoretical importance, and it had been answered ‘yes’
for rational functions by both Fatou and Julia. Fatou had also given an
example of a rational function f for which J(f) is totally disconnected, and
Lattes [14] an example for which J(f) = C. Most of Fatou’s questions were
solved by Noel during the decade 1965-1975, as we now indicate.
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The first question was answered in the affirmative in the paper (22), which is
of fundamental importance in complex dynamics and appropriately dedicated
to Hellmuth Kneser. Here, Noel called on a deep covering theorem due to
Ahlfors (see [11, page 148]) to show that arbitrarily close to each point of J(f)
there is a repelling periodic point of f. From this, he deduced the general
result that if f is any non-linear entire function, then the set of entire functions
that commute with f is countable. Many authors have tried to simplify the
proof in (22) that the repelling periodic points are dense in J(f), in order to
avoid the deep theorem of Ahlfors. Eventually, more elementary proofs based
on a renormalisation technique were given by Schwick [18], Bargmann [1],
and Berteloot and Duval [4].

Two years later, in (25), Noel answered the first part of Fatou’s second ques-
tion by showing that there is a function of the form f(z) = kze*, where k > 0,
such that J(f) = C. A proof that if f(z) = e*, then we have J(f) = C was
given ten years later by Misiurewicz [15].

Noel answered Fatou’s third question in the negative in (32). If J(f) is totally
disconnected, then F(f) must have a single unbounded multiply connected
component. Noel had already constructed in (9) an example of a transcen-
dental entire function for which F'(f) has at least one multiply connected
component. This function was of the form

f(z) = ofi[l (1 ¥ %) :

in which the positive constants 7 < r < ... have the property that

f(An) C Apy1, where A, = {z:72 < |2| < Tiﬁ 4

However, Noel did not determine in (9) whether F(f) has a single unbounded
multiply connected component or a sequence of bounded multiply connected
components. In (33) he used Schottky’s theorem [11, page 169], yet another
result from classical complex analysis, to show that the latter must be the
case. This solved another important problem in complex dynamics, open
since the work of Fatou and Julia, by showing that the above function has
a sequence of wandering domains, that is, distinct components U,, of F(f)
such that f(U,) C Upt1, for n = 1,2,.... In contrast, Sullivan [16] showed
that rational functions do not have wandering domains. The paper (32),
written later than but published earlier than (33), used Schottky’s theorem
once again to show that a transcendental entire function cannot have an
unbounded multiply connected component of F(f), thus proving that J(f)
can never be totally disconnected.

The results in (32) and (33) led to much further work. In (53), Noel showed
that wandering domains for transcendental entire functions may be infinitely
connected. For many years it was not known whether such wandering domains
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could be finitely connected. In this volume, Kisaka and Shishikura show that
they can in fact have any given finite connectivity.

The result in (32) shows that if f is a transcendental entire function, then
J(f) must contain a continuum, so its Hausdorff dimension dimgJ(f) is at
least 1. It remains an open question whether dimyJ(f) = 1 is possible. In
this volume, there is a survey article on dimensions of Julia sets by Stallard,
complemented by a survey article on fractal measures and ergodic theory by
Kotus and Urbanski.

Noel’s wandering domains example mentioned earlier shows that the answer
to Fatou’s fourth question (as stated here) is ‘no’. However, the structure of
the ‘escaping set’, where f™ — oo, continues to stimulate much work, includ-
ing the paper by Rottenfusser and Schleicher that appears in this volume.

Sullivan’s remarkable result [16] that rational functions do not have wan-
dering domains was proved using new techniques based on quasiconformal
conjugacy. Noel quickly saw that these new techniques would also apply to
various families of transcendental entire functions, and a proof that exponen-
tial functions have no wandering domains appeared in (49). This was one of a
number of papers at that time that established many of the basic dynamical
properties of the exponential family and began the description of the corre-
sponding parameter space, the ‘exponential Mandelbrot set’, which has since
been the subject of much study — see, for example, the paper by Rempe and
Schleicher in this volume.

In (41), Noel initiated another major development by showing that if a tran-
scendental entire function f has order of growth at most 1/2, minimal type,
then F'(f) has no unbounded invariant components, and he also gave a more
restrictive condition on the maximum modulus of f that forces every compo-
nent of F(f) to be bounded. The question of whether the latter conclusion
follows from order at most 1/2, minimal type, remains open, though many
authors have obtained partial results in this direction; this volume contains
a survey article on this problem by Hinkkanen.

A key step in Noel’s proof in (41) is to exclude unbounded invariant com-
ponents of F(f) in which f* — oo. He did this by establishing estimates
for the growth of iterates in such components, which he later refined in (57).
In recognition of his work on Fatou components of this type, Eremenko and
Lyubich introduced the name Baker domain for such components in [7]. In
this fundamental paper, Eremenko and Lyubich showed that if the set S(f) of
inverse function singularities of a transcendental entire function f is bounded,
then f has no Baker domains and if S(f) is finite, then f has no wandering
domains; see also [10]. A survey article on Baker domains by Rippon appears
in this volume.

Yet another fundamental contribution to the iteration of transcendental entire
functions came in the papers (65), (73) and (74). Once again an unbounded
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invariant component U of F(f) was considered, but now the aim was to
describe the nature of the boundary of U. Some special cases had been
investigated by other authors, following the appearance of computer pictures
of Julia sets, but Noel and his students Weinreich and Dominguez attacked
the general case. In (65), it was shown that

e if U is not a Baker domain (that is, U is an attracting basin, a para-
bolic basin, or a Siegel disc), then QU is sufficiently complicated that
oo belongs to the impression of every prime end of U; )

e if U is a Jordan curve in the extended complex plane C (and such
U do exist), then not only must U be a Baker domain, but f must be
univalent in U.

The key tool introduced in this work arises from the fact that if ¥ is a
conformal map from the unit disc D onto U, then U~! o f o ¥ is an inner
function, that is, an analytic self-map of D whose angular limits have modulus
1 almost everywhere on dD. The paper (65) initiated a version of Fatou-Julia
theory for inner functions, a topic now of interest in its own right, and this
theory was taken further in (73). Further results on this theory are given in
the paper by Bargmann in this volume.

Many of Noel’s final papers are joint papers with his last student, Dominguez,
and concern the connectedness properties of the Julia set. Many of these
results are described and extended in the paper by Dominguez and Fagella
in this volume.

Fatou-Julia theory of the iteration of general transcendental meromorphic
functions was established in the fundamental papers (62), (63), (64) and (66)
by Baker, Kotus and Lii. The Fatou set F(f) is here taken to be the set
of points near which the iterates f™ are defined and form a normal family,
and then J(f) = C\ F(f). Many of the basic results turn out to be similar
to those for rational and entire functions, but there are some striking differ-
ences. For example, in (62) the authors showed that J(f) is once again the
closure of the repelling periodic points of f, and this fact is used to give a
complete classification of those transcendental meromorphic functions, such
as f(z) = tan z, for which J(f) is a subset of the real line; there are no tran-
scendental entire functions for which the Julia set is contained in the real line.
Then, in (63), they used techniques from approximation theory, pioneered by
Eremenko and Lyubich [6], to construct transcendental meromorphic func-
tions with wandering domains of all possible connectivities.

The question of periodic components was taken up in (64), where the authors
showed that precisely five possible types can arise for a transcendental mero-
morphic function, namely, attracting basins, parabolic basins, Siegel discs,
Herman rings and Baker domains. Moreover, any invariant components of
F(f) must be simply connected, doubly connected, or infinitely connected.
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But perhaps the most striking result here was the construction of a tran-
scendental meromorphic function f with a preperiodic component of F(f)
of any given finite connectivity. This construction used the powerful tech-
nique of quasiconformal surgery, introduced by Shishikura [19], which also
appears in many of the papers in this volume — namely, those by Drasin
and Langley, Dominguez and Fagella, and Kisaka and Shishikura. Finally,
in (66), Sullivan’s method of quasiconformal conjugacy was adapted to show
that a transcendental meromorphic function of finite type has no wandering
domains. These four papers opened a new and fruitful area of research, made
even more accessible by the excellent survey article [3], which appeared soon
after.

One of the differences between the iteration of entire functions and mero-
morphic functions is the number of completely invariant components of the
Fatou set that can occur. In (24) Noel proved that a transcendental entire
function can have at most one completely invariant component of the Fatou
set. In (64) Baker, Kotus and Lii proved that a transcendental meromorphic
function of finite type can have at most two completely invariant Fatou com-
ponents, and in this volume it is shown by Bergweiler and Eremenko that,
in these circumstances, the Julia set must be a Jordan curve. (An example
of a function with these properties is f(z) = tanz.) It is an open question
whether a general transcendental meromorphic function can have at most two
completely invariant Fatou components.

Fatou-Julia theory can be developed in many further directions. For a tran-
scendental meromorphic function f, the iterates f™ need not be meromorphic.
It is desirable, however, to have a closed system of iterates, so that we can
consider, for example, the Fatou set of f™ for n > 2. To obtain such a
system, Noel’s student Herring [12], and independently Bolsch [5], developed
Fatou-Julia theory for functions, such as f(z) = e"™"# which are meromor-
phic outside certain compact totally disconnected subsets of C. Much of
this theory, and its subsequent developments, is expounded in Noel’s last
papers (75), (77), (78) and (79).

This volume also contains papers that, while not explicitly about complex
dynamics, are on closely related topics. The paper by Hayman and Hinkka-
nen is concerned with the growth of meromorphic functions that belong to
certain normal families, the paper by Beardon and Minda classifies conformal
automorphisms of finitely connected regions of the plane, and the paper by
Szekeres is on possible connections between ‘regular growth’” and Abel’s func-
tional equation, a topic in which Noel had a great interest. Finally, the paper
by Bullett and Freiburger is on the theory of holomorphic correspondences, a
generalisation of complex dynamics. Here they investigate, for the first time,
holomorphic correspondences that involve transcendental entire functions.
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