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Preface

This is the first monograph dealing with applications of Lie group analysis and
theory of resonant interactions to the modeling equations governing internal wave
propagation in the deep ocean and in costal areas. Some specific applications to
engineering problems related to reflection of internal waves from sloping bottom
are subject of this book.

The book provides new conservation laws and exact solutions to the nonlin-
ear theory of internal gravity waves in the ocean which allows to investigate the
anisotropic properties of internal waves through the prism of Lie group analysis.
Anisotropy is ubiquitous property of internal waves. But the importance to find ex-
act solutions has been recognized only in recent years. Although it was known al-
ready in early 1970s that linear sinusoidal wavetrains satisfy the nonlinear equations
for internal waves, the fact that plane-wave beams are nonlinear solutions as well
had passed unnoticed until it was recognized in recent studies [76]. Since then, all
analytical modeling of internal wave beams has been based on the very well-known
physical property of a stratified fluid that the frequency of internal waves is inde-
pendent of the magnitude of wavenumber vector so that any sinusoidal plane-wave
disturbance in a uniformly stratified Boussinesq fluid obeying the linear dispersion
relation satisfies the nonlinear equations of motion. However, the fact that the ex-
act solutions representing the wave beams can be found on a regular basis, i.e., by
solving the nonlinear equations in question, still remains unnoticed. It is shown in
the book for the first time that internal wave beams representing exact solutions to
the equation of motion of stratified fluid can be found by solving the given model
as invariant solutions of nonlinear equations of motion. On the illustrative basis, it
will be also shown here that the presence of the invariant solutions makes it possible
to construct more general class of disturbances which represents wave beams prop-
agating in certain direction coinciding with the beam energy radiation and is in the
transverse direction to the general uniform plane wave profile.

The book also provides a concise but systematic introduction to the resonant the-
ory of oceanic internal waves. Resonant wave interactions have been an active area
of research from the very beginning. Resonant interactions play an important role in
producing mixing in the interior of the ocean providing an important link in the pre-
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sumed energy cascade from large to small scales. The Resonant Triad Model (RTM)
developed in our recent studies in [33] is introduced in this book and it is used to
provide an alternative approach to the Thorpe’s problem [79] in the modeling of
self-resonant internal waves, i.e., the waves for which a resonant interaction occurs
at second order between the incident and reflected internal waves off slopes to study
the special and temporal structure of mixing process in the costal areas of the ocean.
The RTM represents the extension of the McComas’ & Bretherton’s three-wave hy-
drostatic model [55] developed previously for a single resonant triad process which
ignores the effects of the earth’s rotation and under hydrostatic approximation to the
case of the non-hydrostatic analytical model involving arbitrarily large number of
rotating internal waves with frequencies spanning the range of possible frequencies,
i.e., between the maximum of the buoyancy frequency (vertical motion) and a min-
imum of the inertial frequency (horizontal motion). As an illustrative example, it is
shown in this book that the classification of resonant interactions into the sum, mid-
dle and difference interaction classes identifies the value of latitude, which is clas-
sified as the singular latitude, at which the coalescence of the middle and difference
interaction classes occurs. At this value of latitude, the value of the bottom slope at
which the second-order frequency and wavenumber components of the incident and
reflected waves satisfy the internal wave dispersion relation can be approximated
by two latitude-dependent parameters in the limiting case when latitude approaches
its singular value. Such coalescence phenomenon had passed unnoticed in previ-
ous studies. Although other analytical, numerical and statistical models designed to
study the resonant interactions of internal waves in the ocean have been developed
over the last decade, the crucial difference between the RTM model presented here
and the previous studies is that the RTM model is based on understanding the dy-
namics of each individual wave in the model. Up to the present, the models based
in that specification do not exist.

Overall, the main purpose of the book is to provide the link between modern
achievements in Lie group analysis of differential equations and nonlinear internal
wave modeling which is expected to result in a better observational knowledge of
the spatial distribution of mixing than achieved to date, and to contribute to the
improvement of diapycnal mixing parameterizations intended for ocean general cir-
culation models and climate models.

The present book is meant for specialists and graduate students in applied math-
ematics interested in physics of the ocean.
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Internal Waves in Stratified Fluid
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Chapter 1
Introduction

Internal waves occur in density-stratified fluid in the presence of gravitational field.
They arise as a result of perturbation which force the stratified fluid to move verti-
cally (i.e., against gravity). Interfacial waves occurring between two superimposed
layers of different densities are a familiar phenomenon, particularly at the upper
free surface of the ocean in the form of surface waves. In the continuously strat-
ified interior of the ocean the restoring force of gravity is much weaker, and as a
consequence, the periods of internal waves are much larger than those of surface
waves.

Internal waves are imperceptible part of the world’s oceans. They represent a ran-
dom superposition of many waves with different amplitudes, wave number, and fre-
quencies spanning the possible range of frequencies between the inertial frequency
and the buoyancy frequency. Typical velocities of internal waves are about 5 cm
- 57! and typical vertical displacements range from a few meters to a few tens of
kilometers, and the vertical wavelengths from about one meter to about one kilo-
meter. Because of the complexity of the internal wave field, comparatively little is
known about the dynamical processes which govern the internal wave field in the
ocean. From the practical standpoint, understanding of such processes is important
for many reasons. One of them is that internal waves play an important climatic role,
permitting information about changes in one region of the ocean to be transmitted
to another. They also advect and disperse pollutants, chemical and biological tracers
and affect the transmission of sound.

However, one of the main reasons for studying internal waves is the fact that they
are suspected to play an important role in the dynamics of the ocean, especially in
affecting the large-scale general circulation model (see e.g., [60]; [83] and [80]).
Particularly, recent interest in internal waves study is due to internal wave’s impor-
tant role in the processes forming horizontal and vertical exchange in the ocean;
mutual interactions between internal waves produce mixing in the interior of the
ocean providing an important link in the presumed energy cascade from large to
small scales (see e.g., [40]; [18]; [32] and [81]). One of the practical needs to bet-
ter understand mixing processes in the ocean resides in the fact that mixing plays
a role in maintaining a gradual transition between the sun-warmed surface layer of
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the ocean and the upwelling cold, dense water formed at high latitudes ([11]). To
understand how internal waves affect the general circulation and how they cascade
energy from large to small scales, one has to study their dynamics. It involves the
study of generation and dissipation mechanisms of nonlinear interactions which are
thought to be responsible for the universal shape and level of the observed internal
wave spectrum (see e.g., [75]; [81]).

The inquiry of understanding of internal wave interactions in the vicinity of
oceanic bottom irregularities is motivated by the consensus of the previous related
studies that the understanding of the reflection of internal waves over sloping to-
pography plays a crucial role in determining exchange between the costal ocean and
the adjacent deep waters. Particularly, current estimates suggest that 40%—50% of
the required energy available for mixing due to internal waves in the interior of the
ocean is injected by tide-topography interactions with the remainder coming from
wind forcing ([82]). The observations by [69]; [48] and [47] based on measure-
ments of microstructure show that mixing is considerably increased over bottom
irregularities. Tidal flows result in mixing directly above the boundaries, in which
case an issue of particular importance is the rate at which oceanic fluid from interior
is exchanged with fluid at the sloping boundary. This exchange may improve the
efficiency of boundary mixing, allowing it to contribute significantly to the global
overturning circulation.



Chapter 2
Governing Equations

In this section we offer a concise introduction to the geophysical fluid dynamics
equations used in this book. For the sake of simplicity, we ignore viscosity, diffusion
and make the incompressibility approximation.

Let us consider an ocean basin consisting of two horizontal boundaries at
z = h(x,y,t) on the free surface and z = f(x,y,t) at the bottom. The function f
is assumed to be given while the function # is considered to be unknown. First, we
argue out the question: “What is a stratification and how it appears?” Our starting
point here is the equations of a three-dimensional fluid motion away from frictional
boundary layers in the simplest case of incompressible, inviscid flow.

A motionless background state is perturbed by velocity components «,v and w,
pressure p, and the density p. In the domain of the continuous motion, i.e., in the
domain where the velocity vector W = (u,v,w) , pressure p, density p and their first
derivatives are continuous, the equations of motion are the Euler’s equation in the
rotating reference frame (see e.g., Section 7.2 in [15])

7l+(7.V)7:—%Vp—26x @ —gk, (2.1)
p,+uVp =0, (2.2
div(%) = 0, (2.3)

in which the subscripts mean the partial differentiation, V is the gradient operator,
u,v,w correspond to zonal, meridional and vertical components of the velocity vec-
tor, g is the gravitational acceleration and & denotes a unit vector in the vertical
direction. In this notation, Eq. (2.1) represents three momentum equations and Egs.
(2.2) and (2.3) stand for the incompressibility condition of the mass conservation
law. By convention, the horizontal x coordinate is increasing eastward and the trans-
verse horizontal coordinate y northward while z is in the vertical direction. The term
20 x @ is referred to as the Coriolis acceleration. Note that the momentum bal-
ance equation (2.1) is a vector equation of motion valid for any coordinate system
rotating with the Earth.
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The components of angular velocity of the Earth in the local Cartesian coordi-
nates are given by [44]

Q) =0, Q) = Qcosh, Q) =Qsing,

where 6 is latitude and Q = 27 rad/day ~ 0.73 x 10~* s~ is the rate of the earth
rotation. Thus

2 3

- i k
20x u =|0 cossin@ | = (fxw—fv, fu— fru), 2.4)
u v w

- — . . L :
where i and j are unit vectors in the xy- directions respectively, and for conve-
nience, the following notation is introduced:

fr=2Qcos8, f=2Qsin. (2.5)

The coefficient f = 2Qsin 6 (which is defined as being twice the vertical compo-
nent of the Coriolis force) is called the Coriolis frequency. Terms involving fj, are
usually neglected, and a scaling analysis shows them to have a small effect ([15]).
Although the Coriolis frequency varies with latitude, this variation is important only
for phenomena having very long length scales (thousands of kilometers). Therefore
the Coriolis forces are unimportant for the vertical motions. Correspondingly, the
only component of the Earth’s angular velocity taken into account in our model for
Coriolis forces is £2(;) which couples horizontal flows to horizontal flows.

2.1 Stratification

To better understand exclusively the phenomenon of stratification, let us consider
first the particular case of fluid motion ignoring the effects of the earth’s rotation.
Then, in the stationary and irrotational flow regime, i.e., when f = 0 and = 0,
Equations (2.2) and (2.3) are satisfied identically while the first equation becomes
Vp = gp. Since g = (0,0,—g), the latter equations are written as

pPx=py=0, p;=—gp. (2.6)

Equation (2.6) implies that the pressure is an arbitrary function of z- direction only,
i.e., p = po(z) which also means that the density is also a function of z, i.e., p =
po (z) so that the following hydrostatic equation holds:

d
=P @7)
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If p (z) #const., then in the stationary case the fluid flakes (splits) into horizontal
layers by planes z =const. along which p, =const. Such splitting phenomenon is
known as stratification and the layers of constant density are called stratus .

Let us consider now some special class of exact solutions of system (2.1) — (2.3)
given by

Lt:u()(Z), V:VO(Z), W=O, p:po(Z), P=PO(Z)> (28)

where u (z) ,vo (z) , P (z) are arbitrary functions of z and py (z) is determined by the
hydrostatic equation (2.7). The solution (2.8) represents the fluid motion in which
there is no vertical motion, the pressure is hydrostatic and the horizontal layers are
preserved. For this reason, the fluid motion determined by (2.8) is called a sliding
motion (in some literature, e.g., [44], such motion is also called shear flow).

2.2 Linear model for small disturbances

Let us look for solution of system (2.1) — (2.3) in the form
U=uo+u', p=po+p, P=po+r, (2.9)

where %”’,p’ and p’ are spacial and time dependent small disturbances of an arbi-
trary sliding flow.
It is convenient to introduce the material derivative operator D by

D=0+ 7u-V. (2.10)

Then, in the linear approximation, we can represent D as the sum: D = DY+ D,

where
D° = 9, +uo (z) Ox +vo (z) 9y (2.11)

and
D' =u (x,y,2,t) O+ (x,y,2,t) O+ W (x,,2,1) ;. (2.12)

The substitution of the expansion (2.9) into the mass conservation law (2.3) gives
Uy +V+w, =0 (2.13)
while the incompressibility condition (2.2) yields
Dop' +w'pg, = 0. (2.14)

To write the expression 1/p in the corresponding linearized momentum equation
(2.1), we first note that

/s

1 1 p

B (2.15)
po+P Py PG+POP
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Thus using the Taylor series expansion, we can replace the term 1 /p by its linear
approximation as follows:

—z———2+0(p'2). (2.16)

Respectively, in the linear approximation, the x—momentum equation (2.1) takes

the form
/

Dou' +wug, + = = 0. @.17)
Po

While the second y—momentum equation can be obtained likewise by observing
that the first and the second equations are symmetric with respect to the index per-
mutation x — y, u — v, the third z—momentum equation (2.1) takes the form

p; , &p'

Dow' + = +2==0. (2.18)

Po  Po
Finally, combining the results of (2.13), (2.14), (2.17) and (2.18) we arrive at the
following linearized equations of motion of stratified fluid:

/
Dot +wug, + 2= = 0, (2.19)
Po
pl
DoV +w'vg, + =2 =0, (2.20)
Po
/ /
pow' + P2+ 8P _ o, (2.21)
Po  Po
Dop’ +w'p,, =0, (2.22)
U + v, +w, = 0. (2.23)

Equations (2.19) — (2.23) represent five linear equations for five unknowns u’,v/, W',
/ Y4
p'and p’.
The symmetry of the model in x and y allows one to look for solution in the form

(u,v,w,p,p) = (U (2),V (2),iW (2),R(2) ,P(z)) exp (i¢), (2.24)

where we denote ¢ = kx + Iy — wt. The procedure is similar to a Fourier transform,
in which case the disturbance amplitude functions U, V,iW, R and P would represent
the z-dependent envelope of a disturbance with horizontal wavenumbers &,/ and
frequency . The substitution (2.24) is more general, however, because @ can be
a complex number. Thus, for example, the real part of @ denotes the disturbance
frequency and the imaginary part denotes the growth rate.

Since the equations (2.19) — (2.23) are linear, we can exclude the amplitude
functions U, V,R (z) and P (z) to write Egs. (2.19) — (2.23) as the single equation in
terms of W (z) only. To this end, let us denote



