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Chapter 1

Elementary Concepts

1.1 Introduction

Traditional probability theory is founded on Kolmogorov’s (1933) ax-
iomatization of a probability function, which assumes probability is a o-
additive measure. This allows for the powerful and highly developed math-
ematics of measure theory to be immediately available as part of the theory.
It is argued in this book, as well as in many places in the literature, that the
measure theoretic foundation, while widely applicable, is overspecific for a
general concept of probability. This book proposes two different approaches
to a more general concept.

The first is qualitative. Kolmogorov’s axiomatization assumes num-
bers (probabilities) have been assigned to events, and his axioms involve
both properties of numbers and events. But where did the numbers come
from? Some have tried to answer this by having probabilistic assignments
be determined by some rule involving random processes. For example, in
von Mises (1936) probabilities are limits of relative frequencies arising from
random sequences. Obviously approaches based on randomness are limited
to situations where assumptions about randomness are appropriate for the
generation of the kind of uncertainty under consideration. It is unlikely,
for example, that such assumptions apply to the kind of uncertain events
encountered in everyday situations. The qualitative approach introduces
numbers (probabilities) without making assumptions about randomness.
It assumes that some pairs of events are comparable in terms of their like-
lihood of occurrence; that is, some pairs of events are comparable through
the relation <, where A = B stands for “A is less or equally likely to occur
as B.” Qualitative axioms are given in terms of events and the relation 3
that guarantee the existence of a function ¢ on events such that for the

1



2 Chapter 1

sure event, X, the null event, &, and all A and B in the domain of ¢,
(i) ¢ is into the close interval [0, 1] of the reals, p(X) = 1, and ¢(@) =0,
(i) if ANB =@, then p(AUB) = ¢(A) + ¢(B), and

(#ii) if A2 B, then ¢(A) < ¢(B).

This qualitative approach yields a more general theory than Kolmogorov’s,
and it applies to important classes of probabilistic situations for which
Kolmogorov’s axiomatization is overspecific. Additional qualitative axioms
can be added so that ¢ satisfies Kolmogorov’s axioms.

I view this book’s axiomatic, qualitative approach as being essentially
about the same kind of uncertainty covered by the Kolmogorov axiomati-
zation. This kind of uncertainty is one dimensional in nature and is mea-
surable through probability functions or a modest generalization of them.
The second approach is about a different kind of uncertainty.

In the decision theory literature, many have suggested that the utility
of a gamble involving uncertain events is not its expectation with respect
to utility of outcomes, but a more complicated function involving utility
of outcomes, subjective probabilities, and other factors of uncertainty, for
example, knowledge or hypotheses about the processes giving rise to the
uncertainty inherent in the events. I find it reasonable to suppose that
uncertainty with such “other factors” give rise to a subjective belief func-
tion that does not necessarily have properties (7) and (i) above of a Kol-
mogorov probability function. In the models presented in the book, the
“other factors” impact belief in two different, but related, ways: (1) by
distorting in a systematic manner a Kolmogorov probability function to
produce a non-additive belief function (i.e., a belief function B such that
B(AU B) # B(A) + B(B) for some disjoint events A and B); and (2) by
changing the nature of the event space so that it is no longer properly mod-
eled as a boolean algebra of events. Quantum mechanics employs (2) in its
modeling of uncertainty. This book’s implementation of (2) uses a different
kind of event space than those found in quantum mechanics. However, as
in quantum mechanics, the belief functions for these event spaces retain
abstract properties similar to those of a Kolmogorov probability function.
In particular, generalized versions of (i) and (i) above are retained.

The book’s two approaches can be read separately using the following
plan:

Qualitative Foundation: Chapters 1 to 5 and 11.
New Event Space: Chapters 1 and 8 to 10.!

1One proof in Chapter 9 use concepts of Chapter 4.



Elementary Concepts 3

Chapters 6 and 7 can be added to either plan. Chapter 7 (which depends on
Chapter 6) provides a qualitative foundation for a descriptive theory of hu-
man probability judgments known as Support Theory. It employs a boolean
event space and axiomatizes a belief function that has a more generalized
form than a Kolmogorov probability function. A different foundation for
Support Theory is given in Chapter 10. It is based on a non-boolean event
space.

The book is not intended to be comprehensive. Much of its material
comes from articles by the author. The good part of such a limitation is
that it makes for a compact book with unified themes and methods of proof.
The bad part is that many excellent results of the literature are left out.

The book is self-contained. The mathematics in it is at the level of
upper division mathematics courses taught in the United States. However,
many of its concepts are abstract and require mathematical sophistication
and abstract thinking beyond that level, but not beyond what is usually
achieved by researchers in applied mathematical disciplines like theoret-
ical physics, theoretical computer science, philosophical logic, theoretical
economics, etc.

1.2 Preliminary Conventions and Definitions

Convention 1.1 Throughout the book, the following notation, conven-
tions and definitions are observed:

R denotes the set of reals, R the set of positive reals, I the integers, It
the positive integers, and * the operation of function composition. Usual
set-theoretic notation is employed throughout, for example, U, N, -, and
€ are respectively, set-theoretic intersection, union, difference, and mem-
bership. C is the subset relation, and C is the proper subset relation, @ is
the empty set, and p(A) is the power set of A, {B|B C A}. ¢ stands for
“is not a member of” and ¢ for “is not a subset of.” For nonempty sets &,
J& and N € have the following definitions:

US = {z|z € E for some F in £} and ﬂg = {z|z € E for all Ein £}.

“iff” stands for “if and only if.” O

Definition 1.1 Let X be a set. Then X is said to be denumerable if and
only if there exists a one-to-one function from It onto X. X is said to be
countable if and only if X is denumerable or X is finite. O

Definition 1.2 Let X be a nonempty set and 3 be a binary relation on
X. Then 3 is said to be:
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Reflexive if and only if for all z in X, z 3 z.

Transitive if and only if for all z, y, and z in X, ifz S yandy 3 2
then z 3 z.

Symmetric if and only if for all z and y in X, if z X y then y 3 z.
Connected if and only if for all z and y in X, either x Ty or y X z.

Antisymmetric if and only if for all z and y in X, if z Sy and y 3 z,
then z = y.

The binary relations <, 27, >, and ~ are defined in terms of 3 as follows:

'Y A

For all z and y in X,
z <y if and only if z 3 y and not y 3 z.
z 7y if and only if y X z.
z > y if and only if y < z.
z~yifandonlyifz Syandy Jz. O

Definition 1.3 Let 3 be a binary relation on the nonempty set X. Then
= is said to be a:

Partial ordering on X if and only if X is a nonempty set and 3 is a
reflexive, transitive, and antisymmetric relation on X.

Weak ordering if and only if 3 is transitive and connected.

Total ordering if and only if 3 is a weak ordering and is antisymmet-
rie.

It is immediate that weak and total orderings are reflexive. By convention,
partial orderings and total orderings 3 are often written as < to emphasize
the fact that the relation ~ defined in terms of X is the identity relation
=, 0O

Definition 1.4 = is said to be an equivalence relation on X if and only if
X is a nonempty set and = is a reflexive, transitive, and symmetric relation
onX. (O

It easily follows that if X is a weak odering on X, then ~ is an equiva-
lence relation on X.

The following definition is useful for distinguishing the usual total or-
dering of the real numbers from the usual total ordering of the rational
numbers.
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Definition 1.5 Suppose < is a total ordering on X. Then (A, B) is said
to be a Dedekind cut of (X, <) if and only if

(i) A and B are nonempty subsets of X,
(#) AUB =X, and
(i) for each z in A and each y in B, z < y.

Suppose (A4, B) is a Dedekind cut of (X, <), where < is a total ordering
on X. Then c is said to be a cut element of (A, B) if and only if either

(1) cisin A and z < ¢ < y for each z in A and each y in B, or
(2) cisin B and z < ¢ <X y for each z in A and each y in B.

(X, X) is said to be Dedekind complete if and only if each Dedekind cut
of (X, <) has a cut element. [

The following theorem is well-known.

Theorem 1.1 (R, <) is Dedekind complete, and for each Dedekind cut
(A, B) of (R,<), if r and s are cut elements of (A, B), thenr =s. O

Definition 1.6 Ay,..., A, is said to be a partition of X if and only if n is
an integer > 2, A,,..., A, are nonempty and pairwise disjoint and

AiU---UA,=X. O

Let P = A;,...,A, be a partition of X. Note that by Definition 1.6,
X is nonempty, & is not an element of P, and P has at least two elements.

A frequently employed principle of set theory is the Axiom of Choice.
This axiom is often needed in mathematics to show the existence of various
set-theoretic objects. In this book, a well-known equivalent of the Axiom
of Choice, called “Zorn’s Lemma,” is sometimes used in proofs.

Definition 1.7 (Axiom of Choice) For each nonempty set Y of non-
empty sets there exists a function f on Y such that for each A in ),
flA)e A. O

Definition 1.8 Suppose ) is a nonempty set of sets. Then A € ) is said
to be a mazimal element of Y with respect to C if and only if for each B in
V,if ACBthen A=B. 0O

Definition 1.9 ) is said to be a chain if and only if ) is a nonempty set
of sets and for all A and B in ), either ACBor BCA. O
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Definition 1.10 (Zorn’s Lemma) Suppose ) is a nonempty set of sets
such that for each subset Z of ), if Z is a chain then |JZ is in Y. Then
Y has a mazimal element with respect to C. [

Definition 1.11 F is said to be a ratio scale family of functions if and
only if F is a nonempty set of functions from some nonempty set into R*
such that (i) 7f is in F for each r in R* and each f in F, and () for all
g and h in F, there exists s in Rt such that g = sh. O

Convention 1.2 In Definition 1.11, “ratio scale” is defined for a family
of functions that are into R*. Occasionally, this concept of “ratio scale”
needs to be expanded to include cases where the elements of F are into
R*U{0} while satisfying the rest of Definition 1.11. The expanded concept
is also called a “ratio scale.” When the context does not make clear which
concept of “ratio scale” is involved, the concept in Definition 1.11 should
be used. O

Definition 1.12 Then F is said to be an interval scale family of functions
if and only if F is a nonempty set of functions from some nonempty set
into R such that (i) rf + s is in F for each 7 in R*, each s in R, and each
f in F, and (#) for all g and h in F, there exist ¢ in Rt and ¢ in R such
that g=qh+t¢t. O

Convention 1.3 The notation (a,b) will often stand for the ordered pair

of elements a and b, and in general (ai,...,a,) will stand for the ordered
n-tuple of elements a1, ...,a,. The notation (ay,...,a,) will also be used
to stand for the ordered n-tuple of elements ai,...,an. (---) is usually

used to describe relational structures with finitely many primitives. These
structures have the form

Q[z(A,Rl,...,Rm,al,...,an),

where A is a nonempty set, Rj,..., R, are relations on A, and ai,...,a,
are elements of A. A,R;,...,Rn,,a1,...,a, are called the primitives of
A, O

Definition 1.13 Let R be an n-ary relation and A be a set. Then the
restriction of R to A, in symbols, R [ A, is

{(a1,...,an)|a1 €A, ..., an € A, and R(ai1,...,an)}. O

Convention 1.4 The convention of mathematics is often employed of hav-
ing the same symbol denote different relations when a structure and sub-
structure are simultaneously considered, for example, + denoting addi-
tion of positive integers in (I, +) as well as addition of real numbers in
(R,+). O



Chapter 2

Kolmogorov Probability Theory

Since the 1930’s, the probability calculus of Kolmogorov (1933, 1950)
has become the standard theory of probability for mathematics and science.
Many philosophers of science and statisticians consider it to be the foun-
dation for a general, rational theory of belief involving uncertainty. The
author and others have been critical of this view and consider it to be a
theory of probability that is at best only rationally justifiable in certain
narrow kinds of probabilistic situations, for example, continuous situations
in physics. That is, we believe the Kolmogorov theory is overspecific for a
general, rational theory of belief.

The Kolmogorov theory assumes the following definition and six axioms:

Definition 2.1 A is said to be a boolean algebra of subsets of X if and
only if the following five conditions hold:

(1) X is a nonempty set and A is a set of subsets of X;

(2) X isin A, and the empty set, @, is in A;

(3) for all A and B, if Aisin A and B isin A, then AN B is in A;

(4) for all A and B, if Aisin A and B is in A, then AU B is in A; and
(5) forall Ain A, X — Aisin A.

A is said to be a boolean o-algebra of subsets if and only if A is a boolean
algebra of subsets such that if A; € A for each i € I, then Ufil A; isin A.

Suppose A is a boolean algebra of sets. Then B is said to be a subalgebra
of A if and only if B C A and B is a boolean algebra of sets. [J

The following six axioms summarize Kolmogorov’s axiomatic treatment
of probability.
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Axiom 2.1 Uncertainty is captured by a unique function P. [

Axiom 2.2 The domain of P is a boolean o-algebra of subsets (Defini-
tion 2.1). O

Axiom 2.3 The codomain of P is a subset of the closed interval of real
numbers [0,1]. O

Axiom 2.4 P(@)=0. O
Axiom 2.5 P(X)=1. O

Axiom 2.6 (c-additivity) IfA;, i € I, is a sequence of pairwise disjoint
sets, then

P(JA) =) _P4). O
i=1 i=1

Definition 2.2 A function P satisfying Axioms 2.2 to 2.6 is called a o-ad-
ditive probability function (on A). O

Except for Axiom 2.4, P(@) = 0, it will be argued at various places in
this book that each of the other five Kolmogorov axioms are overspecific.
Axiom 2.6, o-additivity, is generally singled out in the literature as being
overspecific, and it is often suggested that to achieve a more general theory
of probability, Axioms 2.2 and 2.6 should be replaced by Axioms 2.7 and
2.8 below.

Axiom 2.7 The domain of P is a boolean algebra of subsets (Definition
2.1). O

Axiom 2.8 (finite additivity) For all A and B in A, if ANB = &, then
P(AUB)=P(A)+P(B). O

However, it is argued in this book that Axioms 2.7 and 2.8 are still
overspecific.

Definition 2.3 A function P satisfying Axioms 2.3, 2.4, 2.5, 2.7, and 2.8
is called a finitely additive probability function (on A). O

This book emphasizes the more general situation of finitely additive
probability functions instead of o-additive probability functions. By con-
vention, the term, “the Kolmogorov theory,” applies to both types of func-
tions.



Kolmogorov Probability Theory 9

Convention 2.1 By convention, when the term “probability function” is
used without the prefixes “finitely additive” or “o-additive”, it refers to
a finitely additive probability function. When o-additivity is needed, the
prefix “o-additive” is added. O

In the Kolmogorov theory the important probabilistic concepts of con-
ditional probability and independence are defined in terms of P:

Definition 2.4 For all A and B in A such that P(B) # 0, the conditional
probability of A given B, in symbols, P(A|B), is defined as

P(AN B)

P(4IB) = —5

O

Definition 2.5 For all A and B in A, A and B are said to be independent,
in symbols, A L B, if and only if

P(AN B) = P(A)P(B). O

Probability theory is enormously applicable. Part of the reason is due
to its rich mathematical calculus for manipulating probabilistic quantities.
The richness comes from the following correspondence: addition corre-
sponds to forming disjoint unions of events, multiplication to the inter-
section of independent events, and division to conditioning one event on
another.

Many alternatives to the Kolmogorov theory have been proposed in
the literature. Some are generalizations; others are about a different kind
of “probability.” With few exceptions, the numerical assignments of the
alternatives form very weak calculi of quantities. In contrast, this book
presents alternatives that have calculi that rival the finitely additive version
of the Kolmogorov theory in terms of mathematical richness, and in some
cases exceed it.

The main competitor in the literature to Kolmogorov’s (1933) theory
has been the relative frequency approach of Richard von Mises (1936),
where probabilities are defined as limits of sequences of relative frequencies
of random events. Although many textbooks give limiting relative frequen-
cies as the definition of probability, its rigorous development is almost never
attempted in those books, which in addition often fail to mention that prob-
ability functions that are produced in this manner are finitely additive, and
not o-additive.!

IDescriptions and critical evaluations of prominent approaches to probability theory
can be found in Terrence Fine’s excellent book, Theories of Probability (Fine, 1973).
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This book pursues very different foundational approaches to probability
theory than those of Kolmogorov and von Mises. One is based on a strategy
developed by various behavioral and economic scientists and philosophers.
It assumes an ordering, 3, on a set of events £. “A 2 B” is usually read
as “the event A is less or equally likely to occur than the event B.” The
measurement problem for this kind of situation is showing (£, <) has a prob-
ability representation, that is, showing the existence of a finitely additive

probability function IP on £ such that
if A X B then P(A) < P(B). (2.1)

When Equation 2.1 holds, it is often said that “P represents 3.” At this
level of analysis, the qualitative theory is more general than the finitely
additive version of the Kolmogorov theory, because it does not necessarily
produce a unique probability function for representing <. Nevertheless, as
is shown in Chapter 4, it is still a mathematical rich probability theory.
Some researchers, including the author, consider the lack of uniqueness to
be an important generalization of the Kolmogorov theory.

Many researchers of probability have developed theories to represent
strengths of personal belief as Kolmogorov probabilities. They often provide
arguments that claim the rational assignment of numbers to beliefs must
obey the Kolmogorov axioms. I and others consider the Kolmogorov theory
to be overspecific for many belief situations. We believe it needs to be
extended. (An extension that encompasses additional rational phenomena
is proposed in Chapter 9; extensions that encompass human judgments of
probability are presented in Chapters 7 and 10.)
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Infinitesimals

3.1 Introduction

Probability theory is one of several interpretations of measure theory.
In it the set X is interpreted as a sample space consisting of the set of
possible states world, the boolean algebra £ of subsets of X as a set of
events, and the measure [P as a function that assigns to each event A in £
the probability that the actual state of the world is in A. Although each
z in X is considered to have some chance of occurring, many probabilistic
situations are modeled in a manner such that P({z}) = 0. In such cases,
the possibility of the occurrence of an element of X is not distinguishable
in terms of probability from the impossibility of the occurrence of the im-
possible event @. The inability to make this distinction rules out many
natural concepts for dealing with events of probability 0. Conditioning on
events of probability 0 is an example: Consider the case where P arises
from a uniform distribution on an infinite set X and z and y are elements
of X. Then one would want P({z} | {z,y}) = .5. The obvious and natural
way of extending probability theory to provide for this, and more generally
for a more structured approach to events of probability 0, is to have the
co-domain of P include infinitesimal quantities. As is shown in Chapter 4,
such an inclusion not only provides a closer match to the intuitive con-
cept of “chance of occurring,” but also provides methods that often make
the mathematics of probabilistic situations much easier to deal with—even
when infinitesimals are not mentioned as part of the final theorems. It also
provides a more encompassing theory: Results of Chapters 4 and 11 show
that the inclusion of infinitesimals provide for sharper qualitative axioma-
tizations, a better fit with techniques of mathematical logic, and a better
foundation for philosophical issues concerning probabilities.

|



