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PREFACE

This is the translation of the second Russian edition of the book. The
experience with the first edition has shown that presentation of the material
in the form of problems (there are more than 200 problems in the book)
is particularly suitable for independent study of the course of low-tempe-
rature plasma physics or some questions of it, so that the book serves as
a useful addition to the available textbooks on physics of weakly ionized
plasma. The problems in the book either deal with separate theoretical
subjects or analyze individual resecarch questions. The emphasis is on
presenting the totality of methods and approaches employed for solving
such problems without mathematics obscuring the physical nature of
the processes involved. At the same time, the solutions of the problems
present scientific information of interest for the workers in this field (many
problems stem from recent rescarch results and are formulated so as to
be of possible use for practical work). The appendices containing reference
data serve the same purpose.

Thus, the book is aimed at two types of readers. The first type is gra-
duate students who can study the problems in the book to get acquainted
with the field and its theory. The second type is physicists or technologists
working with weakly ionized plasmas, who can make use of the information
contained in the book.

The bibliography given at the end of the book is a list of textbooks,
monographs and reviews where the reader can find more detailed infor-
mation on the subjects covered by the book. Some of the problems are
based on original research results but no references are given in such cases
because such problems are formulated primarily for the teaching purposes
and no detailed discussion of the results is given. '

The appendices serve different purposes. On the one hand, they briefly
present the definitions and main relationships for collision cross sections
and spectral line broadening. This information is used in the book. On
the -other hand, the appendices contain some reference data including
information on physical constants, simple physical relationships, and
selected parameters of atoms, molecules and ions.
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CHAPTER 1

THE BOLTZMANN
KINETIC EQUATION

Let us consider an ideal gas. The state of a particle of this gas at a given
moment of time is described by its velocity v, coordinate r, and the internal
degrees of freedom which we shall denote by the generalized parameter 7.
The ideality of the gas implies that the mean distance N1 between the
perticles (here N is the density of the particles) is much larger than their
interaction radius (the characteristic distance between the particles, at
which the potential energy of interaction between the particles is of the
order of their kinetic energy). This condition of gas ideality can be written as

No®i2 < 1 (1.1)

where o is the scattering cross section for the particles, at which their
states are noticeably changed.

If the ideality condition (1.1) is satisfied, each particle travels as a free
particle during most of the time and only for a small fraction (~ No3?)
of the time interacts with other particles. The state of the colliding particle
changes during this short collision time. A simultaneous collision of three
particles (that is, when they simultaneously approach each other to a
distance of the order of the interaction radius) is a more rare event than
collision of two particles. Therefore, when analyzing the motion of a
particle in the ideal gas, we can limit ourselves to considering binary colli-
sions of this particle with other gas particles.

The state of the gas can be conveniently described by the function
f(vi, 1, I, 1) of distribution of the particles over the states; the number
of particles in the unit volume around point r, having the velocities from
v, to v; - dv, and the internal state described by the quantum number I,
is f(‘vls T, L II) dv}'

The distribution function for the particles is a solution of the equation
known as the Boltzmann kinetic equation. Let us trace the particles which
are at the point r, travel with the velocity v, and are in the internal state
described by the quantum number J;. The number of particles in a given
state with a given velocity in the unit volume around a given point per
unit time is known as the collision integral I.. Then the variation of the
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distribution function during time dr is
df = f(v; +dvy, v 4dr, t+di, L) — f(v, 1,8, 1) =1.dt
Since the variations of the coordinate and the velocity of the test particle are
F
dr =v,dt and dv, = - dt

where F is the external force acting on the particle and m is the particle’s
mass, the above equation can be rewritten as

of F oF

L tvvr+—2L=1, (1.2)

ot m gy,

2|

§1.1. PROPERTIES
OF THE KINETIC EQUATION

Problem 1.1. Express the collision integral in terms of the differential
cross section of collisions between particles.

Let us define the constant W(vy, I;; Vs, I, — vy, IT; v3, I5) for collisions
between particles in the states v;, ; and v,, I, in the course of which they
go over to the states vj, I] and v, I, respectively. The principle of detailed
balancing (see A2.6) yields

I/I/(vl) Il; Va, 12 - V{, Il’; Vé, I?’.)
— WL I Vi s = v 15 Ve b)) (13)

If the gas consists of one species, the collision integral, by definition, is
L= S(ﬂf; — W dv,dv;dy; )

where f; = f(v,,1, 1, t) and the distribution functions f;, f{ and f; are defined
in a similar way. Equation (1.4) implies summation over the internal
quantum numbers [, /] and ;.

The number of integrations in eq. (1.4) can be reduced if the laws of
conservation of momentum and energy are taken into account, which
use the properties of the transition probability W. This can be done by
considering the differential scattering cross section defined as the ratio of
the number of particles scattered into the solid angle element per unit
time per one scattering particle to the flux density of the scattered particles.
The number of scattering events per unit time in the unit volume, in which
the first particle changes its velocity from the range v;, v; -+ dv, to vy, v; + dv;
and the second particle, from the range v,, v, -+ dv, to Vs, v; + dv, with
a given variation of the internal quantum numbers, is f;fo W dv, dv, dv; dv;.
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The number of the scattering particles in the unit volume is fidv, and the
flux density of the scattered particles is |v, — v,| fodVs, so that the differential
scattering cross section is

y — S1fo W dv, dv, dv] dv, _Ww dv; dv;,
J1@v; f3lVs — vy dv, Vo — vy

Substitution of this equation into eq. (1.4) yields the following modification
of the Boltzmann kinetic equation (1.2):

5} 0 F 0
St =\ = A e, 19

As before, summation over the internal degrees of freedom Iy, I and I,
is implied. Equation (1.5) describes a one-component system. The collision
integral for a multicomponent system must take into account the collisions
of the test particle with the particles of each species.

Problem 1.2. Demonstrate that the functional H(#)=\ f(v, £) In f(vy, £) dv,,

defined for a gas on which no external fields are acting, satisfies the
condition dH/dt < 0.

Differentiating H(¢) with respect to time and using the Boltzmann equation
with the collision integral in the form (1.4), we obtain

dH

S del vy v, VWL — Af)A +1n )

The integrand can be symmetrized by making the substitutions v; — v,,
Vo — Vy:
dH

7. ¥ & ’ ’ y 1
i Savl dvy &, WL — i) (1 G lnm;)

Making the substitution v; o = V; o, V; o = V; , in the integrand and using
the principle of detailed balancing (1.3), we obtain
dH ’ ’ r rr
——= del dvy dvy dv,W(fif; — fife) In f+1%_
dt A
The function of the type (x — y) In (y/x) is non-positive for any positive
x and y. Hence, the functional H(z) satisfies the condition

dH
-—— <0 1.6
= (1.6)

This relationship is known as the Boltzmann H-theorem. The functional H
with the opposite sign is identical to the entropy of the system, so that
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eq. (1.6) expresses the entropy increase law for the system under consi-
deration.

| Problem 1.3. Find the velocity distribution for the gas particles in
thermodynamic equilibrium.

In this case dH/dt = 0, which is true if In (ffi/f'f{) = 0, that is, if In f
is an additive function of the integrals of motion. Using the laws of conser-
vation of momentum and energy in collisions, we can write for the equili-
brium distribution function

Inf=C 4 Cyp + Cse

whence
f=Aexp[— av—vy)]

where ¢ = mv?*/2 is the particle’s energy, p = mv is its momentum, and m
is the particle’s mass. The above equation contains three indefinite constants.

The constant 4 can be found from the normalization condition \ f(v) dv=N

for the distribution function, where N is the number density of the gas
particles. Another constant is expressed through the velocity v, of the directed
motion of the gas particles. The third constant, «, can be found from
the condition that in the reference system in which there is no directed
motion of the particles the mean energy of the particles should be (3/2)7,
where T is the gas temperature. We obtain

(v — Vo) exp[— (v — vl dv
3 2
2 e _ S }
2 Sexp [— a(v—vy)Fdv
m d m d 3m
== g wa In\exp[— x(v —v)dv = — - —Ina3="—
2 du S ; ) 2 dx 4o

and, hence, « = m/2T. Thus, the equilibrium velocity distribution function
normalized for the gas density, which is known as the Maxwellian distri-
bution, has the following form:

fv) = N( 2’::11)312 exp [— ivz—T_vo)_‘z_] = No()e(vy)e(v,) (1.7)
where
-+ oo
m \? m(v, — vgy)? 1t
_f —_— _—_— s ) =1 i
o(0) ( M) exp[ = ] | oadu=1 @9

-0



§ 1.17 Properties of the kinetic equation 13

The H-theorem yields the following important property of the distribu-
tion function f{(v, 7): in the absence of external fields the system tends to
the equilibrium corresponding to the equilibrium distribution (1.7). Hence,
the distribution function which is a solution of the Boltzmann equation (1.2)
does not satisfy the principle of time reversibility. Indeed, let at r = — T
{T' — oo) the system be in a certain non-equilibrium state described by the
distribution function fy(v). According to the H-theorem, at ¢t = T the
system goes over to the equilibrium state described by the Maxwellian
distribution (1.7). If, on the contrary, at ¢t = — T the system is in the
equilibrium state, then at t = T, according to the H-theorem, the system
remains in this state rather than pass over to the state described by the
distribution function fiy(v), as should be expected from reversibility of
time (that is, the requirement that the system develops in the reverse direc-
tion when ¢ is replaced by — t). Hence, the Boltzmann kinetic equation
does not satisfy the principle of time reversibility, while the laws of mecha-
nics from which this equation has been derived satisfy this principle.

Thus, we have found that the distribution function which is a solution
of the Boltzmann equation cannot describe the system exactly. The distri-
bution function is seen to contain a much smaller amount of information
than is needed for the exact description of the system. Indeed, to describe
the system exactly we have to specify the initial states for all the particles,
that is, the number of parameters describing the system is proportional
to the number of particles in it. But when we introduce a distribution func-
tion describing the probability that particles with given parameters are
in a given space element, we thus perform averaging over the initial condi-
tions. Therefore, the distribution function which is a solution of the Boltz-
mann equation (1.2) describes the most probable state of the system for
given macroscopic parameters.

If the system consists of a large number of particles, the most probable
state is practically the exact state, since in such a system fluctuations (devia-
tions from the most probable state) are small. Moreover, it appears practi-
cally unfeasible to find the exact state of a system consisting of a large
number of particles, since the number of parameters describing the system
is very large. The number of parameters increases with the number of parti-
cles in the system. The distribution function satisfying eq. (1.2) has a
smaller number of variables and this number does not depend on the
number of particles of a given species in the system. Thus, description of
a system with the Boltzmann equation (1.2) gives the most probable state
of the system and is, therefore, accurate if the number of particles in the
system is large. The advantage of this approach is that it yields the most
important information on the development of a system by selecting a
limited number of parameters describing it.

' Problem 1.4. Find the number of particles in a given state for a system
| of a large number of particles in a thermodynamic equilibrium (the
! Boltzmann distribution).
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Let a system consist of » particles in various states. The energy of a
particle in the state k is g,. Then, if n, is the number of particles in the
state k& and E is the total energy of the given closed system, we obtain
the following relationships for the total number of particles and the toty,

energy:
n= Y m and E= Y gn (1.9)
% 3

We have to find the distribution of particles over states. We shall assume
that the number of particles in a given state is large (n;, > 1). Furthermore,
we shall make use of the Boltzmann statistics in which the probability
that a particle is in a given state is not affected by other particles present
in this state. The probability of a given distribution of particles over the
states P(ny, Mo, - -» My, - ..) i proportional to the number of ways by
which this distribution can be realized.

To find the number of such ways, first, from the total number of particles

we shall select », particles in state 1. This can be done by C,, ways (C, is
the number of combinations). Then we shall select n, particles in state 2
from the remaining n — n, particles, which can be done by Cp, ™ ways.
This procedure is continued until we find that the probability of a given
distribution of particles over the states, which is proportional to the number
of ways for realizing this distribution, is

k !
n ~n—n n n.
Py, By ooy My o) = ACR Cp, ... Gy, = A

Z’l II n;!
1

where A4 is the normalization constant. The probability P(ny,.. ., #,. . .)
has a maximum at some values n, = n, of occupation numbers which are
the most probable numbers of particles in given states. Let us use the
condition for a maximum of the distribution function. If the numbers of
particles in three states »;, n, and », are varied by amounts small in com-
parison with #;, n, and n, (n; =n; +96;, m =i, — 6, n,=n, + 9,
then in the first approximation in the power series in J,/n; the probability £
is not changed: P(. .., n;, Ay, Ay, . )=P(...,n; + 6;, n,, — 0y, 1, + 9y,. . .).
Hence we obtain [(1; + 8,)! = n,(n)"]
@) )" = ()™

Furthermore, the conditions for balance of particles and balance of energy
yield the following relationships:

0y =0; + 9, &d = &d; +¢9,

Using these relationships to eliminate §; from the above equation, we
obtain

1 1

( ﬁk E—&; ;il & —€p
ﬁi ;ik
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This equation shows that each of the relationships does not depend on

the numbers of the states chosen, that is, it is constant for a given total

aumber of particles and the energy of the system. To meet this condition,
€ dependence of n, on the energy of this state must be expressed as

i, = Bexp (— g/T) (1.10)

where the normalization constant B and the temperature of the system T
are found from conditions (1.9). Equation (1.10) is the equilibrium distri-
bution of particles over states and is known as the Boltzmann distribution.
A special case of this distribution is the Maxwellian distribution found in
Problem 1.3. The Boltzmann distribution yields the following relationship
between the densities of atoms N; and &, in given states in thermodynamic

equilibrium:
L T J (ﬁ;‘l (1.11)
Ny &k T

(here g; and g, are the statistical weights of these states).

| Problem 1.5. Derive the distribution function for the particles with
! half-integral spin if not more than one particle can be in each state
| (the Fermi-Dirac distribution).

If the probability that a particle is in a given state is not small, the Boltz-
mann distribution (1.10) is not applicable. The distribution of identical
particles over states depends then on the statistics of these particles. We
shall find such distribution if not more than one particle can be in each state.

Let the particles in the g, states have the energy ¢, and p(i1;) be the number
of ways to place n, particles in the states with the energy ¢,. The probability
of a given distribution of particles over states is

Py Bigs « w55 Yo » 2 ) = € T ol

where the normalization constant C does not depend on the form of distri-
bution.

As follows from the solution of Problem 1.4, the function P is at a
maximum for the most probable values of occupation numbers n, = 7.
In this case In P also is at a maximum, and we obtain

p_(ﬁk)_ 5”k =0
& pm)

where on, = n, — n, is the deviation of the occupation number from
the mean value (|on,| < 7). Furthermore, eq. (1.9) yields

Zénk=0, Zskénkzo
k
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Multiply the second of the above equations by — p/T and the third by 1/T
(where u and T are constants) and add up the three equations. The result is

5 Pm) _ n SL]ZO
‘k‘:""[p(ﬁk) T

Since dn, can have arbitrary values, the above equation is satisfied if the
term in the square brackets is zero. Hence we obtain the relationship for
the most probable occupation numbers:

p’(_ﬁk) _ R
p(ny) T r

In particular, we find that for the Fermi-Dirac distribution, when #;
particles are in g,-states with the energy ¢, and not more than one particle
is in each state (n, < g), p(n,) is equal to the number of combinations of 7,
things g, at a time. Hence, we obtain

In p(n) = In (g!) — [In (m!) — In (g — n)']

and, since In (n!) =~ Sln ndn for n > 1, we have
0

dlnp(n) T
dn, 8k — M
and
&k

& — H
ex +1
p[ T ]

7 =

&g — M1 =1 . . s
On the average, [exp("—T—l—) + 1] particles are in one state with

the energy &. The constants T (the temperature of the particles) and p
(the chemical potential of the distribution) can be found from the norma-
lization conditions (1.9):

_ —1
Egk[exp(ng“)+l] =n
k

— —1
Zekgk[exp(s"T")—’rl] —E
k

For example, let us calculate the chemical pdtential of the free Fermi
particles with the mass m, whose number density is N. The energy of the
particles in the range from ¢ to ¢ + de (here ¢ = p%/2m) corresponds to

(1.12)




