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Preface

The days when nuclear magnetic resonance (NMR) was a technique appli-
cable only to solution-state samples have long since gone. In the last thirty
years, NMR spectroscopists have striven to make solid-state NMR a truly
useful method, applicable to a very wide range of samples. In this, they have
succeeded admirably, and today NMR spectroscopists have at their disposal
a huge battery of solid-state NMR experiments that allow features of mo-
lecular structure and molecular dynamics to be determined.

Spectral resolution used to be a problem for solid-state NMR. It is no
longer. The resolution routinely obtainable in solid-state NMR spectroscopy
is now largely limited by the homogeneity (or lack of it!) of the samples
being investigated, and not by the solid-state NMR technique. Conse-
quently, the kind of resolution typically seen in solution-state NMR spectra
is now realistically achievable for the solid state.

But solid-state NMR can do so much more than simply repeat the experi-
ments of its solution-state counterpart. Solid-state NMR experiments can
be set up such that the anisotropic nuclear spin interactions, which vanish
in solution-state NMR experiments, remain in force. Thus, the anisotropy
of nuclear spin interactions, such as chemical shielding (giving rise to the
chemical shift in the NMR spectrum), can be measured and, more to the
point, utilized, by chemists.

Chemical shift anisotropy, dipole-dipole coupling and quadrupole cou-
pling can all be used by the chemist to give quantitative information on mo-
lecular structure, conformation and dynamics. One of the huge advances in
solid-state NMR in the last twenty years is the spectroscopist’s ability to,
in effect, switch on and off these anisotropic interactions (at least as far as
the resulting NMR spectrum is concerned). This is what has enable us to
measure accurately the strengths of these anisotropic interactions for use in
chemistry.

So what kinds of problems can solid-state NMR solve? The short answer
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is many. The detailed answer is what prompted me to write this book. It
can be used, for instance, to measure internuclear distances, quantitatively,
which might enable one to determine the conformation of a molecule, or
the length of a hydrogen bond, or determine a significant bond angle. Of
course, diffraction techniques have been traditionally used to do this job but
diffraction techniques require a crystalline lattice, on a relatively long length
scale, before they can give useful results on structural problems. The excel-
lent feature of solid-state NMR is that solid-state NMR can be used effec-
tively even in inhomogeneous or amorphous systems.

The chemistry of today, and probably of the future, has a lot to do with
heterogeneous (solid) systems. Polymers are an obvious example. Beyond
simple polymers, there are polymer blends where two or more polymers are
mixed on a molecular scale. New polymer materials involve the mixing of
polymers with inorganic components, such as clays to improve the desired
material properties. None of these systems can be usefully studied by tra-
ditional diffraction techniques. Solid-state NMR on the other hand can give
huge amounts of information on such systems, ranging from features of mo-
lecular structure, to the length scale of mixing in blends, to information on
the nature of the interaction between the components in organic-inorganic
composites. Moreover, solid-state NMR can give very useful information
on the molecular dynamics in such systems. Molecular dynamics are very
important in determining material properties. For example, in molecular
solids, stresses are generally dissipated by deformation or displacement
(temporary or otherwise) of the molecules. The least damaging way of dis-
sipating a stress is by a distortion of the molecular conformation, possibly
with concomitant (small) displacements of surrounding molecules. This
route requires molecules to have certain degrees of freedom in their mo-
lecular conformation, preferably with some mechanism for restoring the
original structure. One of the few ways we can study the molecular degrees
of freedom is with solid-state NMR.

Many catalytic systems consist of the active catalyst material mounted on
a solid support — an intrinsically heterogeneous, solid system. Again, solid-
state NMR, being a technique which probes local environments, can give
information about the structure and siting of catalytic species, in situ. Simi-
larly, it can give useful structural information on glasses, or so-called amor-
phous materials, and on microcrystalline materials, where crystals suitable
for diffraction methods are not obtainable.

In a completely different area, biology has always dealt with hetero-
geneous systems. Solid proteins in particular, are receiving increasingly large
amounts of interest, especially with the linking of debilitating diseases such
as Alzheimer’s, CJD and Type II diabetes with solid protein deposits in vital
organs of the body. Proteins are notoriously difficult to crystallize, and a
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great deal of useful information on the structure of amyloid proteins,
amongst others, is now being accumulated through solid-state NMR
methods.

This book is intended to provide the necessary background for those
wishing to use solid-state NMR to solve problems in chemistry, biochem-
istry, materials, geology and engineering. As such, it is suitable for under-
graduates embarking on a specialist NMR course and graduate students, as
well as potential solid-state NMR spectroscopists. I hope that it will give a
useful starting point from which to embark into this very interesting and
exciting branch of spectroscopy.

Melinda Duer
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The Basics of NMR 1

This chapter is primarily concerned with the basics of how to describe
nuclear spin systems in NMR experiments. To this end, we first consider the
classical vector model, which in many cases provides a sufficient description
of an uncoupled spin system. As soon as there are interactions between the
spins, such as dipolar coupling, we must use a quantum mechanical model
to describe the dynamics of the spin system. We will use the density opera-
tor approach, which combines a quantum mechanical modelling of indi-
vidual spins or sets of coupled spins with an ensemble averaging over all
the spins (or sets of spins) in the sample.

The latter sections of the chapter deal with the essentials of recording
Fourier transform (FT) NMR spectra. This is essential as it affects the way
in which we view the spins in the sample and thus must influence our the-
oretical description of the spin system. Throughout, each topic is dealt with
in such a way as to introduce the nomenclature which will be used in the
rest of the book and to remind readers of the salient points. Those requir-
ing a more in-depth discussion of these points are strongly recommended to
read the superb book by Levitt [1].

1.1 The vector model of pulsed NMR

In the semi-classical model of NMR, only the net magnetization arising from
the nuclei in the sample and its behaviour in magnetic fields is considered.
It is a suitable model with which to consider the NMR properties of iso-
lated spin-+ nuclei, i.e. those which are not coupled to other nuclei. This
model also provides a convenient picture of the effects of radiofrequency
pulses on such a system. Only a brief description is given here in order to
define the terms and concepts that will be used throughout this book.
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Fig. 1.1 The classical model of the formation of net nuclear magnetization in a sample. In the absence of
a magnetic field, the individual nuclear magnetic moments (represented by vector arrows here) have random
orientation so that there is no net magnetization. In the presence of an applied magnetic field, however, the
nuclear magnetic moments are aligned preferentially with the applied field, except that thermal effects cause
a distribution of orientations rather than perfect alignment. Nevertheless, there is in this case a net nuclear
magnetization.

1.1.1  Nuclei in a static, uniform magnetic field

The net magnetization (which is equivalent to a bulk magnetic moment)
arising from the nuclei in a sample is M and is the vectorial sum of all the
individual magnetic moments associated with all the nuclei (Fig. 1.1):

M=, (1.1)

where L; is the magnetic moment associated with the ith nucleus. In turn,
each nuclear magnetic moment is related to the nuclear spin 1, of the nucleus

by
=yl (1.2)

where v is the magnetogyric ratio, a constant for a given type of nucleus.
Thus we can write the net magnetization of the sample as

M =y] (1.3)

where ] is the net nuclear spin angular momentum of the sample giving rise
to the magnetization M. If the nuclei are placed in a uniform magnetic field
B as in the NMR experiment, a torque T is exerted on the magnetization
vector:

d

T:E (1.4)

In turn, the torque in this situation is given by
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T=MxB (1.5)
Combining Equations (1.3) to (1.5), we can write

d—dhtiznyB (1.6)

which describes the motion of the magnetization vector M in the field B. It
can be shown that Equation (1.6) predicts that M precesses about a fixed
B at a constant rate ® = YB.

In NMR, the applied magnetic field is generally labelled By and is taken
to be along z of the laboratory frame of reference, i.e. B = (0, 0, By) in the
above equations. The frequency with which the magnetization precesses
about this field is defined as wy, the Larmor frequency:

o, =—YB (1.7)

1.1.2  The effect of rf pulses

An electromagnetic wave, such as a radiofrequency (rf) wave, has associ-
ated with it an oscillating magnetic field, and it is this field which interacts
with the nuclei in addition to the static field in the NMR experiment. The
rf wave is arranged in the NMR experiment so that its magnetic field oscil-
lates along a direction perpendicular to z and the By field. Such an oscillat-
ing field can be thought of as a vector which can be written as the sum of
two components rotating about By in opposite directions. The frequencies
of these two components can be written as w,, where o is the frequency
of the rf pulse. Furthermore, it can be shown that only the component which
rotates in the same sense as the precession of the magnetization vector M
about By has any significant effect on M; we will henceforth label this com-
ponent B,(z). The effect of this field is most easily seen by transforming the
whole problem into a rotating frame of reference which rotates at frequency
o, around By; in this frame B, appears static, i.e. its time dependence is
removed.

We can see what happens to the By field in this frame by examining the
effect of a similar rotating frame in the absence of an rf pulse, i.e. the case
of the static, uniform magnetic field considered previously. We concluded
that in the presence of a field B, the magnetization vector M would precess
around By at frequency w,. If the pulse is on resonance, i.e. ®, = Wy, then
the magnetization vector appears stationary in the rotating frame. In effect,
then, the B, field is removed in this frame; the effective static field parallel
to z is zero and hence the magnetization M is stationary. So, in the presence
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By(1-w,/ay)

Fig. 1.2 The magnetic fields present in the rotating frame of reference. The rotating frame rotates about the
laboratory z-axis at the frequency of the rf pulse, w,.. The rf irradiation is applied such that its oscillating mag-
netic field is along the laboratory x-axis — in common parlance, we say that the pulse is applied along x. The
field due to the pulse appears static in the rotating frame, and the static field B, appears to be reduced by a
factor of /o, where , is the Larmor frequency, ®, = —yB,.. The net effective field in the rotating frame is
the vectorial sum of the components along x and z, B It is this field that the nuclear spin magnetization
precesses around.

of a pulse, the only field remaining in the rotating frame is the B, field. As
in the case of the magnetization experiencing the static field B, in the lab-
oratory frame, the result of this interaction is that the magnetization vector
M precesses about the resultant field, which is now By, at frequency —yB,.
We define this nutation frequency —yB, as ®;.

The direction of the magnetic field due to the rf pulse can be anywhere
in the xy plane of the rotating frame. The phase of a pulse, ¢, is defined as
the angle B; makes to the x-axis in the rotating frame. The pulse does not
have to be applied on resonance; indeed there will be many, many cases in
solid-state NMR experiments when the pulse will be off resonance at least
for part of the total spectrum available. In a frame rotating at ®, about B,
in the absence of a pulse, the Larmor precession frequency is reduced from
W, to Wy — o, about By. We can infer from this that there is an effective
static field along z in this frame of (®w, — wy)/y, rather than zero as in the
on-resonance case. The magnetic fields present in the rotating frame are then
those shown in Fig. 1.2; there is a field of magnitude (®, — w,)/y along z
and B, along x (for a pulse with phase 0°). The nuclear magnetization pre-
cesses around the resultant field B.4 shown in Fig. 1.2.
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Fig. 1.3 The effect of a 905 on-resonance pulse on equilibrium magnetization in the rotating frame. The
equilibrium magnetization rotates by 90° about x and ends up along —y.

NMR spectroscopists talk generally of an rf pulse ‘flipping’ the magneti-
zation. The flip angle or nutation angle, 0, of an on-resonance pulse is the
angle that the pulse field B, turns the magnetization during time T,

ert =0Ty :YB]‘EI'f (1-8)

Thus, a 90° pulse is simply one which has a flip angle of 6,; = n/2 radians
or 90°. The corresponding pulse length is referred to as the 90° pulse length.
Rf pulses along x in the rotating frame are referred to as ‘x-pulses’, those
along y as ‘y-pulses’, and so on.

By definition, positive rotations are anticlockwise about the given axis.
So, after a 90° x-pulse (for shorthand labelled 902), nuclear magnetization
M, which started along z, is left lying along —y (Fig. 1.3). From the point
at which the rf pulse is turned off, the magnetization acts under the only
magnetic field remaining, which is the effective field along z, of magnitude
(W — W)y, i.e. zero if the rotating frame frequency w, is the same as the
Larmor frequency, . If the effective field along z is zero, then the magne-
tization is stationary in the rotating frame after the pulse is switched off; if
non-zero, the magnetization precesses around z from the position it was in
at the end of the pulse at frequency wy, — .

1.2 The quantum mechanical picture: hamiltonians
and the Schrodinger equation

In the quantum mechanical picture, we start from a consideration of indi-
vidual nuclei and, from this, generate a picture for the whole collection of
nuclei in a sample. This is called the ensemble average. We will often refer
to the spin system by which we mean a nuclear spin or collection of inter-



