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Preface

Dynamical systems are often subject to random influences, such as external fluctua-
tions, internal agitation, fluctuating initial conditions, and uncertain parameters.
In building mathematical models for these systems, some less-known, less well-
understood, or less well-observed processes (e.g., highly fluctuating fast or small
scale processes) are ignored because of a lack of knowledge or limitations in our an-
alytical skills and computational capability. This ignorance also contributes to the
uncertainty in mathematical models of complex dynamical systems. However, the
uncertainty or randomness may have a delicate and profound impact on the overall
evolution of complex dynamical systems. Indeed, there is a clear recognition of the
importance of taking randomness into account when modeling complex phenomena
in biological, chemical, physical, and other systems.

Stochastic differential equations are usually appropriate models for randomly
influenced systems. Although the theoretical foundation for stochastic differential
equations has been provided by stochastic calculus, better understanding dynamical
behaviors of these equations is desirable.

‘Who is this book for?

There is growing interest in stochastic dynamics in the applied mathematics commu-
nity. This book is written primarily for applied mathematicians who may not have
the necessary background to go directly to advanced reference books or research
literature in stochastic dynamics. My goal is to provide an introduction to basic
techniques for understanding solutions of stochastic differential equations, from an-
alytical, deterministic, computational and structural perspectives. In deterministic
dynamical systems, invariant manifolds and other invariant structures provide global
information for dynamical evolution. For stochastic dynamical systems, in addition
to these invariant structures, certain computable quantities, such as the mean exit
time and escape probability (reminiscent of the quantities like “eigenvalues” and
“Poincaré index” in deterministic dynamics, and “entropy” in statistical physics),
also offer insights into global dynamics under uncertainty. The mean exit time and
escape probability are computed by solving deterministic, local or nonlocal, partial
differential equations. Thus, I treat them as deterministic tools for understanding
stochastic dynamics. It is my hope that this book will help the reader in accessing
advanced monographs and research literature in stochastic dynamics.
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What does this book do?

A large part of the materials in this book is based on my lecture notes for the gradu-
ate course Stochastic Dynamics that I have taught for many times since 1997. Among
the students who have taken this course, about two-thirds are from applied mathe-
matics, and the remaining one-third are from departments such as physics, computer
science, bioengineering, mechanical engineering, electrical engineering, and chemical
engineering. I would like to thank those graduate students for helpful feedback and
for solutions to some exercises. For this group of graduate students, selection of
topics and choice of presentation style are necessary. Thus, some interesting topics
are not included. The choice of topics is personal but is influenced by my teaching
to these graduate students, who have basic knowledge in differential equations, dy-
namical systems, probability, and numerical analysis. Some materials are adopted
from my recent research with collaborators, and these include most probable phase
portraits in Chapter 5, and random invariant manifolds in Chapter 6, together with
mean exit time, escape probability and nonlocal Fokker-Planck equations for systems
with non-Gaussian Lévy noise in Chapter 7.

I have tried to strike a balance between mathematical precision and accessibility
for the readers of this book. For example, some proofs are presented, whereas some
are outlined and others are directed to references. Some definitions are presented in
separate paragraphs starting with Definition, but many others are introduced less
formally as they occur in the body of the text. As far as possible, I have tried to
make connections between new concepts in stochastic dynamics and old concepts in
deterministic dynamics.

After some motivating examples (Chapter 1), background in analysis and pro-
bability (Chapter 2), a mathematical model for white noise (Chapter 3), and a crash
course in stochastic differential equations (Chapter 4), I focus on three topics:

e Quantities that carry stochastic dynamical information (Chapter 5):
This includes moments, probability densities, most probable phase portraits, mean
exit time, and escape probability.

e Structures that build stochastic dynamics (Chapter 6): This includes
the multiplicative ergodic theorem and Hartman-Grobman theorem for linearized
stochastic systems, and invariant manifolds for nonlinear stochastic systems.

e Non-Gaussian stochastic dynamics (Chapter 7): This is an introduction
to systems driven by non-Gaussian, a-stable Lévy motions.

This book is full of examples, together with many figures. There are separate
Matlab simulation sections in Chapters 2-4, whereas in Chapters 5 and 7, numerical
simulations are included inside various sections. Although Chapter 6 contains no
numerical simulations for its nature, it has Ezamples and Problems that require
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detailed derivations or calculations by hand. At the end of each chapter, there
are homework problems, including some numerical simulation problems; Matlab is
sufficient for this purpose. Most of these problems have been tested in the classroom.
Hints or solutions to most problems are provided at the end of the book.

A section with an asterisk may be skipped on a first reading.

Some additional references are provided in the “Further Readings” section, for
more advanced readers.

What prerequisites are assumed?

For the reader, it is desirable to have basic knowledge of dynamical systems, such
as the material contained in
e Chapters 1-2 of Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields by J. Guckenheimer and P. Holmes; or
e Chapters 1-2 of Introduction to Applied Nonlinear Dynamical Systems and
Chaos by S. Wiggins; or
e Chapters 1-2 of Differential Equations and Dynamical Systems by L. Perko;
or
e Chapters 1-3 of Nonlinear Dynamics and Chaos by S. H. Strogatz.
Ideally, it is also desirable to have elementary knowledge of stochastic differential
equations, such as
e Chapters 1-6 of Stochastic Differential Equations by L. Arnold; or
e Chapters 1-5 of An Introduction to Stochastic Differential FEquations by L. C.
Evans; or
e Chapters 1-5 of Stochastic Differential Equations by B. Oksendal; or
e Chapters 1-3 of Stochastic Methods by C. Gardiner.
Realizing that some readers may not be familiar with stochastic differential equa-
tions, I review this topic in Chapter 4.

Acknowledgements

I would like to thank Philip Holmes for suggesting that I write this book back in
2004, when we were taking an academic tour in China. Steve Wiggins has also
encouraged me to publish this book. I am especially grateful to Ludwig Arnold,
who has always inspired and encouraged my learning and research in stochastic
dynamics. I appreciate Bernt Oksendal’s encouragement and comments. I have
benefited from many years of productive collaboration and interaction with many
colleagues, especially Peter Bates, Peter Baxendale, Dirk Blomker, Tomas Cara-
ballo, Michael Cranston, Hans Crauel, Manfred Denker, David Elworthy, Franco
Flandoli, Hongjun Gao, Martin Hairer, Peter Imkeller, Peter E. Kloeden, Kening



iv Preface

Lu, Navaratnam Sri Namachchivaya, Anthony Roberts, Michael Scheutzow, Bjorn
Schmalfuss, Richard Sowers, Xu Sun, Yong Xu, and Huaizhong Zhao. My interest
in non-Gaussian stochastic dynamics started with a joint paper with D. Schertzer,
M. Larcheveque, V. V. Yanovsky and S. Lovejoy in 2000 and was further inspired
and enhanced by Peter Imkeller and Ilya Pavlyukevich during my sabbatical leave
at Humboldt University in Berlin in 2006.

Ludwig Arnold proofread this entire book and provided invaluable comments and
suggestions. Han Crauel, Peter Imkeller, Peter Kloeden, Liu Jicheng, Lu Guangy-
ing, Mark Lytell, Bjorn Schmalfuss, Song Renming, Wang Xiangjun, Wu Jianglun
proofread part of this book and their comments and corrections helped improve the
book in various ways.

I thank Yan Jia-an for helpful discussions about topics in Chapter 4. 1 am very
grateful to Chen Zhenging, Li Xiaofan, Qiao Huijie, Song Renming, Wang Xiangjun
and Wu Jianglun for helpful discussions about topics in Chapter 7. My former
and current graduate students, especially Chen Xiaopeng, Fu Hongbo, Gao Ting,
Guo Zhongkai, Jiang Tao, Kan Xingye, Mark Lytell, Ren Jian, Yang Jiarui and
Zheng Yayun, have helped with generating figures, proofreading some chapters, and
providing solutions to some Problems.

I would also like to acknowledge the National Science Foundation for its many
years’ generous support of my research. A part of this book was written while I was
at the Institute for Pure and Applied Mathematics (IPAM), Los Angeles, during
2011-2013. Diana Gillooly at Cambridge University Press, and Zhao Yanchao and
Li Xin at Science Press have provided valuable professional help for the completion
of this book.

My wife, Xiong Yan, and my children, Victor and Jessica, are constant sources
of inspiration and happiness. Their love and understanding made this book possible.

Duan Jingiao
Wuhan, April 2014



Notations

£: Is defined to be

|z|: Absolute value of z € R?

|z||: Euclidean norm of x € R"

a A b= min{a, b}

aV b= max{a,b}

at £ max{a, 0}

a~ £ max{—a,0}

B;: Brownian motion

B(R™): Borel o-field of R"

B(S): Borel o-field of state space S

Supp(f) £ Closure of {x € R" : f(x) # 0}: The support of function f

C(R™): Space of continuous functions on R"

Co(R™): Space of continuous functions on R™ which have compact support

C*(R™): Space of continuous functions on R™ which have up to k-th order con-
tinuous derivatives

CE(R™): Space of continuous functions on R™ which (i) have up to k-th order
continuous derivatives, and (ii) have compact support

C>(R™): Space of continuous functions on R™ which have derivatives of all orders

C5o(R™): Space of continuous functions on R™ which (i) have derivatives of all
orders, and (ii) have compact support

C?(D): Space of functions which are locally Hélder continuous in D with expo-
nent o

C®(D): Space of functions which are uniformly Holder continuous in D with
exponent o

C*(D): Space of continuous functions in D whose k-th order derivatives are
locally Holder continuous in D with exponent «

4(&): Dirac delta function

E: Expectation

E*: Expectation with respect to the probability measure P* induced by a solution
process starting at x

Fx (xr): Distribution function of the random variable X

FX or a(X): o-field generated by the random variable X



Notations

FXt = g(X,,s5 € R): o-field generated by a stochastic process X;. It is the

smallest o-field with which X; is measurable for every t.

F¢&: o-field generated by the stochastic process &

FB £ g(Bs : s < t): Filtration generated by Brownian motion By
Foo 2 U(Ut;()ft)
‘Ft+ é nE>O ]:t+E
Fi- = U(Us<t‘F9)
A

FX 2 0(X,s: 0<s<t): Filtration generated by a stochastic process X

Ft o £ 0(Usct FL): Also denoted as Vo, FL

F* 2 0(UizsFi): Also denoted as Vs, Fi

H(f): Hessian matrix of a scalar function f : R™ — R!

H(&): Heaviside function

H*(D): Sobolev space

HE(D): Sobolev space of functions with compact support

| - |[x: Sobolev norm in H*(D) or HE(D)

lim in m.s.: Convergence in mean square, i.e., convergence in L?(£))

IP: Space of infinite sequences {z;}32; such that Y .=, |z;|? < o0

L?(R™) : Space of square-integrable functions defined on R"

LP(R™) : Space of p-integrable functions defined on R™, with p > 1

L?(D) : Space of p-integrable functions defined on a domain D C R™, with p > 1
L?(92) or L*(©2,R™) : Space of random variables, taking values in Euclidean space

R™, with finite variance

L%(Q) or L?(2, H) : Space of random variables, taking values in Hilbert space
with finite variance

LP(Q) or LP(Q,R"): {X : E|X|P < oo} forp>1

Li(w): Lévy motion

L¥(w): a-stable Lévy motion

N: Set of the natural numbers

N(p,0?): Normal (or Gaussian) distribution with mean y and variance o2
v(dy): Lévy jump measure

P: Probability measure

P(A) or P{A}: Probability of an event A

PX: Distribution measure induced by the random variable X

P*: Probability measure induced by a solution process starting at x

P(\): Poisson distribution with parameter A > 0

R: Two-sided time set

R*: One-sided time set {t : t > 0}

R!: One dimensional Euclidean space



Notations xi

R"™: n-dimensional Euclidean space

o(X) or FX: o-field generated by the random variable X. It is the smallest
o-field with which X is measurable.

Tr(A): Trace of A

U(a,b): Uniform distribution on the interval [a, b]

Ve FE £ 0(Us<t FL): Also denoted as Ft

Vise Fi £ 0(UizsFL): Also denoted as F
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Chapter 1

Introduction

Noisy fluctuations are abundant in complex systems. In some cases, noise is not
negligible, whereas in some other situations, noise could even be beneficial. It is
desirable to have a better understanding of the impact of noise on dynamical evo-
lution of complex systems. In other words, it becomes crucial to take randomness
into account in mathematical modeling of complex phenomena under uncertainty.

In 1908, Langevin devised a stochastic differential equation for the motion of
Brownian particles in a fluid, under random impacts of surrounding fluid molecules.
This stochastic differential equation, although important for understanding Brow-
nian motion, went largely unnoticed in the mathematical community until after
stochastic calculus emerged in the late 1940s. Introductory books on stochastic
differential equations (SDEs) include (8, 88,213].

The goal for this book is to examine and present select dynamical systems con-
cepts, tools, and methods for understanding solutions of SDEs. To this end, we also
need basic information about deterministic dynamical systems modeled by ordinary
differential equations (ODEs), as presented in the first couple of chapters in one of
the references [110,290].

In this introductory chapter, we present a few examples of deterministic and
stochastic dynamical systems, then briefly outline the contents of this book.

1.1 Examples of deterministic dynamical systems

We recall a few examples of deterministic dynamical systems, where short time-scale
forcing and nonlinearity can affect dynamics in a profound way.

Example 1.1 A double-well system.

Consider a one-dimensional dynamical system & = z — . It has three equilib-
rium states, —1,0 and 1, at which the vector field  — 23 is zero. Observe that

<0, —-1l<zx<lorl<z<oo,
F=z—5=z(1-2%)<{ =0, z=-1,0,1,

>0, —w<z<-—-lorl0<z<l.



