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COMBINATORIAL ANALYSIS

Contents

1.1 Introduction 1.5 Multinomial Coefficients

1.2 The Basic Principle of Counting 1.6 'The Number of Integer Solutions of
1.3 Permutations Equations

1.4 Combinations

[.I Introduction

Here is a typical problem of interest involving probability: A communication system
is to consist of n seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns
out that exactly m of the n antennas are defective, what is the probability that the
resulting system will be functional? For instance, in the special case where n = 4 and
m = 2, there are 6 possible system configurations, namely,

= =0 OO0
—_ 0 O O =
[ W e TS e I
O == O =

where 1 means that the antenna is working and 0 that it is defective. Because the
resulting system will be functional in the first 3 arrangements and not functional in
the remaining 3, it seems reasonable to take % = % as the desired probability. In
the case of general n and m, we could compute the probability that the system is
functional in a similar fashion. That is, we could count the number of configurations
that result in the system’s being functional and then divide by the total number of all
possible configurations.

From the preceding discussion, we see that it would be useful to have an effec-
tive method for counting the number of ways that things can occur. In fact, many
problems in probability theory can be solved simply by counting the number of dif-
ferent ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.
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[.2 The Basic Principle of Counting

Example
2a

Example
2b

The basic principle of counting will be fundamental to all our work. Loosely put, it
states that if one experiment can result in any of 7 possible outcomes and if another
experiment can result in any of n possible outcomes, then there are mn possible
outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can
result in any one of m possible outcomes and if, for each outcome of experiment
1, there are n possible outcomes of experiment 2, then together there are mn
possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating
all the possible outcomes of the two experiments; that is,

(1’1)1 (1’2)’ Lelry (l’n)
(2, 1)7 (2’2)! vy (‘an)

(m,1), (m,2), ..., (m,n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in its jth possible outcome. Hence, the set of
possible outcomes consists of m rows, each containing » elements. This proves the
result.

A small community consists of 10 women, each of whom has 3 children. If one
woman and one of her children are to be chosen as mother and child of the year,
how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first experi-
ment and the subsequent choice of one of her children as the outcome of the second
experiment, we see from the basic principle that there are 10 X 3 = 30 possible
choices. |

When there are more than two experiments to be performed, the basic principle
can be generalized.

The generalized basic principle of counting

If » experiments that are to be performed are such that the first one may result
in any of n possible outcomes; and if, for each of these n; possible outcomes,
there are n; possible outcomes of the second experiment; and if, for each of the
possible outcomes of the first two experiments, there are n3 possible outcomes
of the third experiment; and if ..., then there is a total of n; - n; - - - n, possible
outcomes of the r experiments.

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and
2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to be cho-
sen. How many different subcommittees are possible?



Example
2c

Example
2d

Example
2e

1.3 Permutations

Example
3a

Example

A First Course in Probability 3

Solution We may regard the choice of a subcommittee as the combined outcome of
the four separate experiments of choosing a single representative from each of the
classes. It then follows from the generalized version of the basic principle that there
are3 X 4 X 5 X 2 =120 possible subcommittees. |

How many different 7-place license plates are possible if the first 3 places are to be
occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle, the answer is 26 - 26 -
26 - 10 - 10 - 10 - 10 = 175,760,000. |

How many functions defined on n points are possible if each functional value is
either 0 or 1?

Solution Let the points be 1,2,...,n. Since f(i) must be either 0 or 1 for each
i=1,2,...,n,it follows that there are 2" possible functions. |

In Example 2c, how many license plates would be possible if repetition among letters
or numbers were prohibited?

Solution In this case, there would be 26 - 25 - 24 - 10 - 9 - 8 - 7 = 78,624,000
possible license plates. |

How many different ordered arrangements of the letters a, b, and ¢ are possible?
By direct enumeration we see that there are 6, namely, abc, ach, bac, bca, cab,
and cba. Each arrangement is known as a permutation. Thus, there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained
from the basic principle, since the first object in the permutation can be any of
the 3, the second object in the permutation can then be chosen from any of the
remaining 2, and the third object in the permutation is then the remaining 1.
Thus, there are 3 - 2 - 1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used
for the 3 letters then shows that there are

nn—-1Hn-2)---3.2.1=n!

different permutations of the n objects.

How many different batting orders are possible for a baseball team consisting of 9
players?

Solution There are 9! = 362,880 possible batting orders. |

A class in probability theory consists of 6 men and 4 women. An examination is
given, and the students are ranked according to their performance. Assume that no
two students obtain the same score.

(a) How many different rankings are possible?
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Example
3c

Example
3d

(b) If the men are ranked just among themselves and the women just among them-
selves, how many different rankings are possible?

Solution (a) Because each ranking corresponds to a particular ordered arrangement
of the 10 people, the answer to this part is 10! = 3,628,800.

(b) Since there are 6! possible rankings of the men among themselves and 4!
possible rankings of the women among themselves, it follows from the basic principle
that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. |

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are math-
ematics books, 3 are chemistry books, 2 are history books, and 1 is a language book.
Ms. Jones wants to arrange her books so that all the books dealing with the same
subject are together on the shelf. How many different arrangements are possible?

Solution There are 4! 3! 2! 1! arrangements such that the mathematics books are
first in line, then the chemistry books, then the history books, and then the language
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! pos-
sible arrangements. Hence, as there are 4! possible orderings of the subjects, the
desired answer is 4! 4! 3! 21 1! = 6912. |

We shall now determine the number of permutations of a set of n objects when
certain of the objects are indistinguishable from each other. To set this situation
straight in our minds, consider the following example.

How many different letter arrangements can be formed from the letters PEPPER?

Solution We first note that there are 6! permutations of the letters Py E1P,P3E>R
when the 3P’s and the 2E’s are distinguished from each other. However, consider
any one of these permutations —for instance, Py P; £y P3E; R. If we now permute the
P’s among themselves and the £’s among themselves, then the resultant arrange-
ment would still be of the form PPEPER. That is, all 3! 2! permutations

P1P,E\P3E>R
P\P3sE|P,E;R
P>P1E|P3EsR
P,P3EPiE3R
P3P{E|P;FE>R
P3P,E P EsR

P1P,E>P3E(R
P1P3E;PL,E\R
P,P1E;P3ER
P,P3E>P1E(R
P;P{E>P,E(R
P3P,E>PLE(R

Example
3e

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange-
ments of the letters PEPPER. |

In general, the same reasoning as that used in Example 3d shows that there are

n!
m!m! - nyl

different permutations of n objects, of which n; are alike, n; are alike, . .., n, are
alike.

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the
United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament
result lists just the nationalities of the players in the order in which they placed, how
many outcomes are possible?
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Solution There are 101
a3 = 1260

possible outcomes. |

Example How many different signals, each consisting of 9 flags hung in a line, can be made
3f from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color
are identical?

Solution There are o1

4!3!12!
different signals. |

= 1260

1.4 Combinations

We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer this
question, reason as follows: Since there are 5 ways to select the initial item, 4 ways to
then select the next item, and 3 ways to select the final item, there are thus5 < 4 - 3
ways of selecting the group of 3 when the order in which the items are selected is
relevant. However, since every group of 3—say, the group consisting of items A, B,
and C—will be counted 6 times (that is, all of the permutations ABC, ACB, BAC,
BCA, CAB, and CBA will be counted when the order of selection is relevant), it
follows that the total number of groups that can be formed is

5-4-3

3.2:1"° i
In general,asn(m — 1)--- (n — r 4+ 1) represents the number of different ways that
a group of r items could be selected from n items when the order of selection is
relevant, and as each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a set of n
items is
nn -1 m—-r+1 n!
r! T m—-nr

Notation and terminology

We define (:’),forr =< n, by

"\
r]= mn-nlr

and say that ’: represents the number of possible combinations of n

objects taken r at a time.”

i By convention, 0! is defined to be 1. Thus, ( 2 ) = ( Z ) = 1. We also take ( ': ) to be equal to 0 when
eitheri < Oori > n.
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Example
4a

Example
4b

Example
4c

Thus, ': represents the number of different groups of size r that could be

selected from a set of n objects when the order of selection is not considered relevant.

A committee of 3 is to be formed from a group of 20 people. How many different
committees are possible?

20 - 19 - 18 ;
20) = ————— = 1140 possible committees. |

Solution There are ( 3 3 2.1

From a group of 5 women and 7 men, how many different committees consisting of
2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to
serve on the committee together?

Solution As there are (;) possible groups of 2 women, and (;) possible

groups of 3 men, it follows from the basic principle that there are ( g ) (; ) ==

5-4\7-6-5 . L
( = 350 possible committees consisting of 2 women and 3 men.

2.-1)3-2-1
Now suppose that 2 of the men refuse to serve together. Because a total of

(g) (? — 5 out of the (; = 35 possible groups of 3 men contain both of

the feuding men, it follows that there are 35 — 5 = 30 groups that do not contain

g = 10 ways to choose the 2
women, there are 30 - 10 = 300 possible committees in this case.

both of the feuding men. Because there are still

Consider a set of n antennas of which m are defective and n — m are functional
and assume that all of the defectives and all of the functionals are considered indis-
tinguishable. How many linear orderings are there in which no two defectives are
consecutive?

Solution Imagine that the n — m functional antennas are lined up among them-
selves. Now, if no two defectives are to be consecutive, then the spaces between the
functional antennas must each contain at most one defective antenna. That is, in the
n — m + 1 possible positions—represented in Figure 1.1 by carets—between the
n — m functional antennas, we must select m of these in which to put the defective
n—m+1

antennas. Hence, there are "

possible orderings in which there is at

least one functional antenna between any two defective ones.

Alalal...alala

1 = functional

~ = place for at most one defective

Figure 1.1 No consecutive defectives.
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A useful combinatorial identity is

(f):('::ll)+(":l) l<r=n (4.1)

Equation (4.1) may be proved analytically or by the following combinatorial argu-

ment: Consider a group of n objects, and fix attention on some particular one of

these objects—call it object 1. Now, there are (’: : : ) groups of size r that con-
tain object 1 (since each such group is formed by selecting r — 1 from the remaining

n — 1 objects). Also, there are ( " : 1 ) groups of size r that do not contain object
1. As there is a total of ( : ) groups of size r, Equation (4.1) follows.

n ; ; ; .
The values ( ) ) are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

n
x+n'= Z ( 2 ) xkynk (42)

k=0

We shall present two proofs of the binomial theorem. The first is a proof by
mathematical induction, and the second is a proof based on combinatorial consider-
ations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation (4.2) reduces to

x—l—y=((1))x0y1 + (})xly()=y+ X

Assume Equation (4.2) forn — 1. Now,

@+ )'=x+ P+ !

n—1
=(x+ y)Z(" & l)xky"_l_k

k=0

n—1

n-1
22(" ; l)xk+1yn—l—k " Z(n ; 1)Xkyn—k
k=0

k=0
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Example
4d

Example
4e

Letting i = k + 1 in the first sum and { = k in the second sum, we find that

n n—1 ) . n—1 A —1 ) ]
(x+y)n=;(j_l)xtyn-z+§< x )x:ynz
= =\

n

-1
_oun n—1 n—1 ion—i n
e E[(121)+ () oo

=

n—1
— x s Z(’;)xiyn—i 4 yn

n
n G
= ( ; )xlyll i
1
i=0

where the next-to-last equality follows by Equation (4.1). By induction, the theorem
is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product
(1 + yD@2 + y2) - (n + Yn)

Its expansion consists of the sum of 2" terms, each term being the product of n fac-
tors. Furthermore, each of the 2" terms in the sum will contain as a factor either x;
or y; foreachi =1,2,...,n. For example,

(X1 + yD&2 + y2) =x1x2 + x1y2 + y1x2 + yiy2

Now, how many of the 2" terms in the sum will have k of the x;’s and (n — k) of
the y;’s as factors? As each term consisting of k of the x;’s and (n — k) of the y;’s
corresponds to a choice of a group of k from the » values x1,x7,...,x,, there are

Z such terms. Thus, letting x; = x,y; = y,i = 1,...,n, we see that
n n
@+p=) ( k)xky"‘k
k=0

Expand (x + y)3.
Solution

3
(x_I_y)3=(0)Xoy3Jr (-;’)x1y2+ (;)XZyl " (g)ﬁyo

=y 4 3% + 3%y + |

How many subsets are there of a set consisting of n elements?

Solution Since there are ( Z ) subsets of size k, the desired answer is

n i
Z(k)z(l + l)n:2n

k=0
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This result could also have been obtained by assigning either the number 0 or the
number 1 to each element in the set. To each assignment of numbers, there cor-
responds, in a one-to-one fashion, a subset, namely, that subset consisting of all
elements that were assigned the value 1. As there are 2" possible assignments, the
result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)
as a subset of the original set. Hence, the number of subsets that contain at least 1
element is 2" — 1. |

[.5 Multinomial Coefficients

In this section, we consider the following problem: A set of n distinct items is to be
divided into r distinct groups of respective sizes ny,ny,...,n,, where Y \_; nj = n.
How many different divisions are possible? To answer this question, we note that

there are :' possible choices for the first group; for each choice of the first group,
1

there are (n ;2111 ) possible choices for the second group; for each choice of the

—n|g — n
n3

so on. It then follows from the generalized version of the basic counting principle

that there are

n n—m n—mn —ny — - — n_4
ny ny ny

first two groups, there are “ ) possible choices for the third group; and

n! (n — ny)! m—-—m —np — - — n_y)!
T n—n)!n!(n — ng — na)! mp! 0! n,!

n!
T nlng!ony!

possible divisions.

Another way to see this result is to consider the n values 1,1,...,1,2,...,2,...,
r,...,r, where i appears n; times, for i = 1,...,r. Every permutation of these values
corresponds to a division of the » items into the r groups in the following manner:
Let the permutation iy, iy, . .., i, correspond to assigning item 1 to group iy, item 2 to
group I, and so on. For instance, if » = 8 and if n; = 4, n, = 3, and n3 = 1, then
the permutation 1,1,2,3,2,1,2,1 corresponds to assigning items 1,2, 6,8 to the first
group, items 3, 5,7 to the second group, and item 4 to the third group. Because every
permutation yields a division of the items and every possible division results from
some permutation, it follows that the number of divisions of # items into r distinct
groups of sizes ny,n,...,n, is the same as the number of permutations of n items of
which n are alike, a'nd ny are alike, .. ., and n, are alike, which was shown in Section

n!

1.3toequal ———.
R P B
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Example
5a

Example
5b

Example
5¢

Notation

ny,N2y.es

n n!
n,nz,... sy | onylng!eeon,!

represents the number of possible divisions of 7 distinct

Ifn1+n2+...+n,=n,wedeﬁne( " n)by
XL g

n
Thus,
ny,np,... .0y

objects into r distinct groups of respective sizes ny,ny, ..., n,.

A police department in a small city consists of 10 officers. If the department policy is
to have 5 of the officers patrolling the streets, 2 of the officers working full time at the
station, and 3 of the officers on reserve at the station, how many different divisions
of the 10 officers into the 3 groups are possible?

Solution There are = 2520 possible divisions. |

10!
5!1213!
Ten children are to be divided into an A team and a B team of 5 each. The A team
will play in one league and the B team in another. How many different divisions are
possible?

. 10! . -
Solution There are STs1 = 252 possible divisions. |
In order to play a game of basketball, 10 children at a playground divide themselves
into two teams of 5 each. How many different divisions are possible?

Solution Note that this example is different from Example 5Sb because now the
order of the two teams is irrelevant. That is, there is no A or B team, but just a
division consisting of 2 groups of 5 each. Hence, the desired answer is
10!/(5! 5"
2!
The proof of the following theorem, which generalizes the binomial theorem, is
left as an exercise.

=126 @

The multinomial theorem
1 +x+--+x)"'=

n
> X
nyLng,....n r
(ny,....ny):
moA e+ n=n

That is, the sum is over all nonnegative integer-valued vectors (ny,n2,...,n,)
suchthatn; +ny + - + n,=n.

n
ny,na,...,np

The numbers ( ) are known as multinomial coefficients.



