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Preface

ONE of the ways in which topology has influenced other branches
of mathematics in the past few decades is by putting the study of
continuity and convergence into a general setting. This book
introduces metric and topological spaces by describing some of
that influence. The aim is to move gradually from familiar real
analysis to abstract topological spaces; the main topics in the
abstract setting are related back to familiar ground as far as
possible. Apart from the language of metric and topological
spaces, the topics discussed are compactness, connectedness, and
completeness. These form part of the central core of general
topology which is now used in several branches of mathematics.
The emphasis is on introduction; the book is not comprehensive
even within this central core, and algebraic and geometric topol-
ogy are not mentioned at all. Since the approach is via analysis, it is
hoped to add to the reader’s insight on some basic theorems there
(for example, it can be helpful to some students to see the
Heine-Borel theorem and its implications for continuous functions
placed in a more general context).

The stage at which a student of mathematics should see this
process of generalization, and the degree of generality he should
see, are both controversial. I have tried to write a book which
students can read quite soon after they have had a course on
analysis of real-valued functions of one real variable, not necessar-
ily including uniform convergence.

The first chapter reviews real numbers, sequences, and con-
tinuity for real-valued functions of one real variable. Most readers
will find nothing new there, but we shall continually refer back to
it. With continuity as the motivating concept, the setting is
generalized to metric spaces in Chapter 2 and to topological spaces
in Chapter 3. The pay-off begins in Chapter 5 with the study of
compactness, and continues in later chapters on connectedness
and completeness. In order to introduce uniform convergence,
Chapter 8 reverts to the traditional approach for real-valued
functions of a real variable before interpreting this as convergence
in the sup metric.
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Most of the methods of presentation used are the common
property of many mathematicians, but I wish to acknowledge that
the way of introducing compactness is influenced by Hewitt
(1960). It is also a pleasure to acknowledge the influence of many
teachers, colleagues, and ex-students on this book, and to thank
Peter Strain of the Open University for helpful comments and the
staff of the Clarendon Press for their encouragement during the
writing.

W.A.S.
Oxford, 1974



Introduction

IN this book we are going to generalize some theorems about
convergence and continuity which are probably familiar to the
reader in the case of sequences of real numbers and real-valued
functions of one real variable. An example of the kind of result we
shall be aiming to generalize is the following: if f is a real-valued
function which is defined and continuous on the closed interval
[a, b] in the real line, then f is bounded on [a, b), i.e., there exists a
real number K such that |f(x)|<K for all x in [a, b). Several such
theorems about real-valued functions of a real variable are true
and useful in a more general framework, after suitable minor
changes of wording. For example if we suppose that f is a
real-valued function of two real variables which is defined and
continuous in a rectangle [a, b]x[¢, d], then it is still true that f is
bounded on this rectangle. Once we have seen that the result
generalizes from one to two real variables, it is natural to suspect
that it is true for any finite number of real variables, and then to go
a step further by asking just how general a situation can the
theorem be formulated for, and how generally is it true? These
questions lead us to metric and topological spaces.

Before going on to study such questions, it is fair to ask: what is
the point of generalization? One answer is simply that it saves
time, or at least avoids tedious repetition. For example, if we can
show by a single proof that a certain result holds for functions of n
real variables, where n is any positive integer, this is better than
proving it separately for one real variable, two real variables, three
real variables, etc. In the same vein, generalization often gives a
unified mental grasp of several results which otherwise might just
seem vaguely similar, and in addition to the satisfaction involved,
this more efficient organization of material helps some people’s
understanding. Another gain is that generalization often illumi-
nates the proof of a theorem, because to see how generally a given
result can be proved, one has to notice exactly what properties or
hypotheses are used at each stage in the proof. A motive which is
perhaps more sophisticated is the urge to prove any given result in
the appropriate context; what this means is partly a matter of taste,
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and it is not easy to explain before it has been done.

Against these motives, we should be aware of some dangers in
generalization. Most mathematicians would agree that it can be
carried to an excessive and useless extent. Just when this stage is
reached is a matter of controversy, but the potential reader is
warned that some mathematicians would say "Enough, no more (at
least as far as analysis is concerned)’ when we get into metric
spaces. Also, there is an initial barrier of unfamiliarity to be
overcome in moving to a more general framework, with its new
language; the extent to which the pay-off is worthwhile is likely to
vary from one student to another.

As a consequence of introducing abstractions gradually, the
theorem density is low. The title of theorem is reserved for
substantial results, which have significance in a broad range of
mathematics.

Some paragraphs and exercises are marked 1 to denote that they
require some knowledge of abstract algebra, and others are
marked * to denote that they are tentatively thought to be more
severe than the rest. There are hints at the end of the book for all
such exercises and some others.

At several points in the text, suggestions are made about helpful
diagrams which can be drawn. Readers are strongly urged to draw
their own diagrams wherever possible, even when no specific
suggestions are made.

A previous course in real analysis is regarded as a prerequisite
for reading this book. What this means is an introduction (includ-
ing rigorous proofs) to continuity, differential (and preferably also
integral) calculus for real-valued functions of one real variable,
and to convergence of real number sequences and series. This
material is contained for example in Burkill (1970) or Spivak
(1973) (names followed by dates in parentheses refer to the
bibliography at the end of the book). Chapter 1 is intended only as
a review of some of the real analysis to which the rest of the book
most frequently refers. It does not include special functions and
facts from calculus which we sometimes use for illustration. The
experience of abstraction gained from a previous course in, say,
linear algebra would help the reader in a general way to follow
the abstraction of metric and topological spaces. However, the
student is likely to be the best judge of whether she/he is ready, or
wants, to read this book.



Notation and terminology

WE use the logical symbols = and < or iff, meaning implies and if
and only if. Throughout, we use the language of sets and maps.
Since most introductions to algebra and analysis contain a survey
of this language, we merely list notation.

If an object a belongs to a set A we write ae A, and if not we
write aZ A. If A is a subset of B (perhaps equal to B) we write
A<B or BoA. The subset of elements of A possessing some
property P is written {ae A:P(a)}. A finite set is sometimes
specified by listing its elements, say {ai, ao,..., a.}. Intersection
and union of sets are denoted by [ and |J. The empty set is
written J. Given two sets A and B, the set {be B: b& A} is written
B—A. Thus in particular if A< B, the complement of A in B is
B—A. If for each i in some set I we are given a subset A; of a set S,
then we denote by | A, [] A (or just |J A;, [) A:) the union and

I

i€l i€r I
intersection over all i in I; in this situation, I is called an indexing
set. We use De Morgan’s laws, which in the above notation assert

S—U Ai= n (S—Ai), S‘O Ai= U (S_A.)

The Cartesian product AXB of sets A, B is the set of all ordered
pairs (a, b) where ac A, beB. This generalizes easily to the
product of any finite number of sets; in particular we use A" to
denote the set of ordered n-tuples of elements from A. We shall
not consider infinite products of sets. Occasionally we use 2* to
denote the set of all subsets of a set A.

A map or function (the terms are used interchangably) between
sets A, B is written f: A—B. We call A the domain of f, and we
avoid calling B anything. We think of f as assigning to each a in A
an element f(a) in B, although logically it is preferable to define a
map as a pair of sets A, B together with a certain type of subset of
AXB (intuitively the graph of f). Persisting with our way of
thinking of f, we define the graph of f to be Gi=
{(a, b)e AXB:f(a)=>b}. For any subset C< A, the (direct) image
f(C) of C under f is {be B:b=f(c) for some ¢ in C} and for any
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subset D< B, the inverse image f (D) of D under fis{ac A:f(a)e
D}. We use the formulae

{nc)=nra,  fuc)-usc,

r(no)=nrwy r(yun)=usro
f(B—D)=A-f(D),

where f: A—>B is a map and C;c A, D;< B for every i in I. Note
that equality does not necessarily hold in the first of these. We call
f injective if f(a)=f(a") = a=d/, since the term one-one is a little
ambiguous. We should therefore call f: A— B surjective if f{(A)=
B, but instead we call such an f onto. If f has both these properties
we call it a one—one correspondence. In the special case when a map
f: A—B is injective we may define an inverse function f: f(A)—
A. When f is injective and C< f(A) there is therefore a second
meaning of f '(C). Fortunately this determines the same subset of
A as the previous meaning, but we emphasize that the inverse
image set f'(C) is defined for any C< B, whether f is injective or
not, whereas the inverse map ' is defined only if f is injective, and
even when f is injective the direct image f '(C) of C under f ' is
defined only if C<f(A).

Given a map f: A— B and a subset C< A we write f| C:C—B
for the restriction of f to C, defined by (f| C)(c)={f(c) for all c in C.
In this situation we also refer to f as an extension of f| C to A.
Given maps f: A—B, g:B—C, the composition gof:A—C is
defined by gef(a) = g(f(a)) for any a in A. In particular if i: D— A
denotes the inclusion map of a subset D in A, and f: A— B is any
map, then fei=f| D. Special maps used include the identity map
f: A— A of any set A, given by f(a)=a for all a in A, and constant
maps f: A— B, given by f(x)=">b for every x in A and some fixed b
in B.

We shall occasionally assume that the terms equivalence relation
and countable set are understood.

We use N, Z, Q, R, C to denote the sets of natural numbers (or
positive integers), integers, rational numbers, real numbers, and
complex numbers respectively. We often refer to R as the real line,
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and we call the following subsets of R intervals:

(i) [a bl={xeR:asxs<b},
(i) (ab)={xeR:a<x<b},
(iii)  (a, bl={xeR:a<x=<b},
(iv) [a, b)={xeR:a=<x<b},
(v) (o, b]={xeR:x=<b},
(vi) (—oo, b)={xeR:x<b},
(vii) [a,©)={xeR:x=a},
(viii)  (a,©)={xeR:x>a},
(ix) (-, x)=R.

xiii

The intervals in (i), (v), (vii) (and (ix)) are called closed intervals;

those in (ii), (vi), (viii) (and (ix)) are called open intervals, and the
others are called half-open intervals. When we refer to an interval
of types (i)—(iv), it is always to be understood that b>> a, except for
type (i), when on stated occasions we also allow b= a. We shall try
to avoid the occasional risk of confusing an interval (a, b} in R with
a point (a, b) in R? by stating which of these is meant when there
might be any doubt.
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Review of some real analysis

1.1 Real numbers
Two popular ways of thinking about the real number system are:

(1) geometrically, as corresponding to all the points on a
straight line;

(2) in terms of decimal expansions, where if a number is
irrational we think of longer and longer decimal expansions
approximating it more and more closely.

Neither of these intuitive ideas is precise enough for our
purposes, although each leads to a way of constructing the real
numbers from the rational numbers. The second of these ways is
described in the appendix. As the reader probably knows, one
approach to real numbers is to use a set of axioms. This leaves
aside the questions of whether there is any system satisfying the
axioms and to what extent such a system is unique. Also, it can
hardly be said to explain what the real numbers are to anyone who
does not already know in an intuitive sense. But it has the merit of
providing quickly a point of departure for analysis.

Many introductions to analysis contain a list of axioms for the
real numbers (see, for example, Spivak (1973) or Chapter 1 of
Apostol (1957)). A large number of these axioms may be summed
up technically by saying that the real numbers form an ordered
field. A less precise description is that addition, subtraction,
multiplication, and division of real numbers all work in the way
that we expect them to, and that the same is true of the way in
which inequalities x<<y work and interact with addition and
multiplication. We shall not review these axioms, but concentrate
solely on the so-called completeness axiom. The reasons for this
strange behaviour are, first, that this is the axiom which distin-
guishes the real numbers from the rational numbers (and in a sense
analysis from algebra), and secondly that our intuition is unlikely
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to let us down on properties deducible from the ordered field
axioms, whereas arguments using the completeness axiom tend to
be more subtle.

In discussing the completeness axiom we shall proceed as if the
real number system were already ‘there’, and our job is to describe
one property of it. (In a strictly axiomatic approach we ought to
explain what the completeness axiom says using only the ordered
field axioms, and then define the real numbers to be any system
satisfying the completeness axiom as well as the ordered field
axioms.)

We need some terminology. Let S be a non-empty set of real
numbers. An upper bound for § is a number x such that y<x for
all y in S. If an upper bound for S exists we say that S is bounded
above. Lower bounds are defined similarly.

ExaMPLESs 1.1.1. (a) The set R of all real numbers has no
upper or lower bound.

(b) The set R_ of all strictly negative real numbers has no lower
bound, but for example 0 is an upper bound.

(c) The half-open interval (0, 1] is bounded above and below.

1f S has an upper bound u, then S has many upper bounds, since
any x satisfying x=u is another upper bound. This gives the next
definition some point.

DEerFiNITION 1.1.2. Given a non-empty subset S of R which
is bounded above, we call u a least upper bound for S if

(a) u is an upper bound for S,
(b) x=u for any upper bound x of S.

ExampLE 1.1.3. In Example 1.1.1(b), 0 is a least upper
bound for R.. For 0 is an upper bound, and it is a least upper
bound because no strictly negative number x can be an upper
bound for R_, since 3x>x and xR _. Examples 1.1.1(c) and (b)
show that a least upper bound of a set S may or may not be in S.

It follows from Definition 1.1.2 that least upper bounds are
unique when they exist. For if u, u' are both least upper bounds for
a set S, then since u’ is an upper bound it follows that u<u' by
leastness of u (by leastness we mean property 1.1.2(b)). Similarly
u'=u, so u=u'. Greatest lower bounds are defined similarly. We
can now state one form of the completeness axiom for R.
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Axiom 1.1.4.  Any non-empty subset of R which is bounded
above has a least upper bound.

This axiom is quite subtle, and it is difficult to grasp its full
significance until it has been used several times. It corresponds to
the intuitive idea that there are no gaps in the real numbers,
thought of as the points on a straight line; but the transition from
the intuitive idea to the formal statement is not immediately
obvious. For some sets of real numbers, such as Examples 1.1.1(b)
and (c), it is ‘obvious’ that a least upper bound exists (strictly
speaking, this means that it follows from the ordered field axioms).
As a first example of the kind of set to which we really want to
apply the completeness axiom, and of its relation to the existence
of irrational numbers, let S ={x € Q:x*<2}. Then intuitively the
least upper bound of S is the irrational /2 (we write /2 for the
positive square root of 2). Formally, we need to prove the
following assertions:

(a) if u is a least upper bound for S then u’=2,

(b) there is no rational number u such that u®>=2.

We shall prove (a) in Example 1.1.8 below. The reader has
probably seen a proof of (b); it is included in Exercise 1.5.5 for
which hints are given.

For any non-empty subset S of R which is bounded above, we
call the unique least upper bound sup S (sup is short for sup-
remum. Other notation sometimes used is L.u.b. S). Although the
completeness axiom was stated in terms of sets bounded above, it
is equivalent to the corresponding property for sets bounded
below. The next. proposition formally states half of this equival-
ence.

ProrosiTION 1.1.5. If a non-empty subset S of R is bounded
below then it has a greatest lower bound.

Proof. Let T={xeR:-xeS}. The idea of the proof is simply
that I is a lower bound for S iff —{ is an upper bound for T. The
details are left as Exercise 1.5.6.

Just as in the case of least upper bounds, a non-empty subset S
of R which is bounded below has a unique greatest lower bound
called inf S (short for infimum) or g.Lb.S.

We next give two applications of the completeness axiom. The
proofs use several ‘obvious’ facts about R which in a strictly
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axiomatic approach would be deduced from the ordered field
axioms. We leave the reader to spot these.

ProrosiTioN 1.1.6. The set N of natural numbers is not
bounded above.

Proof. Suppose that N is bounded above. Then by the com-
pleteness axiom there is a real number u=sup N. For any n in N,
n-+1is alsoin N, so n+1=<u. But then n<uy—1. Since this is true for
all nin N, u—1 is an upper bound for N, contradicting the leastness
of u. This contradiction shows that N cannot be bounded above.

The property expressed in Proposition 1.1.6, or some equivalent
statement, is called Archimedes’ axiom (it is an axiom in some
axiom systems for R, although not in ours).

CorROLLARY 1.1.7. Between any two distinct real numbers x,
y there is a rational number.

Proof. Suppose x<y. Then y—x>0, and 1/(y—x) exists. By
Proposition 1.1.6 there is a positive integer n satisfying n>
1/(y—x), so 1/n<y—x. Now let M={meN:m/n>x}. By Proposi-
tion 1.1.6, M is non-empty, otherwise nx would be an upper
bound for N. Hence, since M<N, M contains a least number v.
(This deduction would be fallacious if all we knew was, say,
McR..) This means v/n>x, (v—1)/n<x. Hence v/n=x+1/n<
x+(y—x)=y, and v/n is a rational number satisfying x<<v/n<y as
required.

ReMARK. Between any two distinct real numbers there is
also an irrational number (see Exercise 1.5.7).
We are now in a position to prove the existence of V2.

ExampLEe 1.1.8. There exists a real number u such that
2
uw=2.

Proof. Let S={xeQ:x’<2} (we could equally well use
{xeR:x’<2}). Then S is non-empty (1€S). To prove that S is
bounded above, there is no need to be fastidious—the existence of
some upper bound, however much larger than is strictly necessary,
will do. For example, 10 is an upper bound, since if y>10 then
y*>100>2, and y is not in S. Hence xe S = x=<10. Now by the
completeness axiom, u=sup S exists. In fact u=1, since 1€S. We
shall prove that u”=2, by showing that each of u*>2, u><2 leads
to a contradiction.
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First suppose that u”>2. Then (u”~2)/2u>0, so by Proposition
1.1.6 there exists an n in N satisfying

0<1/n<(u*-2)/2u.
Then

(u—1/n)’=u’—2u/n+1/*>u’*-2u/n>u’—(u*-2)=2,

so xS = x*<2<(u—1/n)> > x<u—1/n, contradicting the least-
ness of u.

Secondly suppose that u”’<2. Choose an integer n such that
0<1/n<(2—u%/4u and 1/n<2u. Then

(u+1/n)’=v’+2u/n+1/n*<u’+2u/n+2u/n (since 1/n<<2u)
su’+2—u’ (since 2-u’=4u/n)
=2.

Hence u+1/ne S, contradicting the fact that u is an upper bound
for S. This completes the proof that u’=2,

By similar proofs we could establish the existence of other
square roots, cube roots, etc. However, the kind of work needed
above can later be done much more efficiently, although the proofs
are still based on the completeness axiom.

The completeness axiom can be stated in various other forms.
Two of these are mentioned in §1.2 below.

We conclude this brief review of real numbers by recalling two
useful inequalities, whose proofs are immediate.

ProrosITION 1.1.9. |x+y|<|x|+|y| for any x, y in R.

CoroLLARY 1.1.10. |x—y|=||x|—|y}| for any x, y in R.

1.2 Real sequences

Formally an infinite sequence of real numbers is a map s:N—R.
This definition is useful for discussing topics such as subsequences
and rearrangements without being vague. In practice, however,
given such a map s we denote s(n) by s. and think of the sequence
in the traditional way as an infinite ordered string of numbers,
using the notation (s.) or sy, sz, s,... instead of s for the whole
sequence.

It is important to distinguish between a sequence (s.) and the set
of its members, {s.:neN}. The latter can easily be finite. For



