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PREFACE

Computer understands only Machine code. So it is necessary to have a intermediate
to convert the source language into the machine code. So the design of compilers
is very important in the engineering fields.

Overwhelming response from my students and other teachers of various
engineering colleges who have referred my notes inspired me to write this book.

The book is written as a text, with problems and exercises. In every chapter
of this book, more importance is given to the concepts and many problems are
solved which covers all varieties of problems in a simpler and easier techniques.

The book covers the syllabus of Undergraduate and Postgraduate students of
CSE and ISE branches of almost all universities.

Any suggestion for the improvement of the book will be acknowledged and
well appreciated. Suggestions can be emailed to mohan_kit@yahoo.com

H.S. Mohan
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CHAPTER

INTRODUCTION TO COMPILERS

1.1 COMPILERS

A Compiler is a program, takes a program written in a source language and
translates it into equivalent program in a target language.

Source program Target program
—_— Compiler —>
(Normally a program (Normally the equivalent
written in high level program in m/c code
language) relocatable object file)

1.2 OTHER APPLICATIONS

In addition to the development of Compiler, the techniques used in compiler
design can be applicable to many problems in Computer Science.

1. Techniques used in Lexical Analyzer can be used in Text editors,
information retrieval system and Pattern Recognition Programs.

2. Techniques used in a parser can be used in a query processing system
such as SQL.

3. Many software having a complex front end may need techniques used in
Compiler Design.



1.2 COMPILER DESIGN

4. Most of the techniques used in Compiler Design may be used in Natural
Language Processing (NLP) Systems.

If the target program is an executable Machine language program. It can
then be called by the user to process inputs and process outputs.

Input Target Output
» program >

An interpreter is another common kind of Language Processor. Instead
of producing a target program as a transition an interpreters appear to directly
execute the operations specified in the source. Program on inputs supplied by
the user.

Source program

Output
Interpreter

Input

Example
A java language Processor combine compilation and interpretation.

A Java Source Program may first be compiled into an intermediate form
called Byte Code. The Byte codes are then interpreted by a virtual machine.

l Source program
Translator
Intermediate ———— Virtual Output
program | machine
Input

Figure: A hybrid compiler

1.3 A LANGUAGE PROCESSING SYSTEM

In addition to a compiler, several other Programs may be required to create an
executable Target Program as shown in figure.

e A source program may be divided into modules stored in seperate files.
The task of collecting the source program is sometimes entrusted to
a seperate program called a preprocessor. The preprocessor may also
expand shorthands called Macros.



