,
Design

H.S. Mohan

Alpha
Science

COMPILER
DESIGN

H.S. Mohan

OL

Alpha Science International Ltd.
Oxford, U.K.

Compiler Design
232 pgs.

H.S. Mohan

Professor and Head

Department of Information Science and Engineering
SJIB Institute of Technology

Kengeri, Bangalore

Copyright © 2014

ALPHA SCIENCE INTERNATIONAL LTD.
7200 The Quorum, Oxford Business Park North
Garsington Road, Oxford OX4 2JZ, U.K.

www.alphasci.com

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

ISBN 978-1-84265-857-4

Printed in India

COMPILER
DESIGN

Dedicated
to
My Beloved Mother
Yashodha

PREFACE

Computer understands only Machine code. So it is necessary to have a intermediate
to convert the source language into the machine code. So the design of compilers
is very important in the engineering fields.

Overwhelming response from my students and other teachers of various
engineering colleges who have referred my notes inspired me to write this book.

The book is written as a text, with problems and exercises. In every chapter
of this book, more importance is given to the concepts and many problems are
solved which covers all varieties of problems in a simpler and easier techniques.

The book covers the syllabus of Undergraduate and Postgraduate students of
CSE and ISE branches of almost all universities.

Any suggestion for the improvement of the book will be acknowledged and
well appreciated. Suggestions can be emailed to mohan_kit@yahoo.com

H.S. Mohan

ACKNOWLEDGEMENTS

The satisfaction and euphoria that accompany the successful completion of any
task would be incomplete without the mention of people who made it possible
because “Success is the abstract of hard work and perseverance, but steadfast of
all is encouragement guidance”. So I would like to acknowledge all those whose
guidance and encouragement served as a beacon light and crowned my efforts
with success.

I would like to express my pranam’s to his Divine soul Padmabhushana
Sri Sri Sri Dr. Balagangadharanatha Maha Swamiji and pranam’s to his Holiness
Sri Sri Sri Nirmalanandanatha Maha Swamiji, the president of Sri Adichunchanagiri
shikshana trust ® for their Blessings.

I would like to express my profound grateful to Reverend Sri Sri Prakashnath
Swamiji, Managing Director, SJBIT, Bangalore for his blessings.

[am grateful to Dr. Puttaraju, Principal for his kind co-operation and encourage-
ment.

I am grateful to Dr. V. Rajappa, Founder, Director Prajwal Academy of Technical
Educations and Neelakanta V. for their moral support and encouragement given to
me for writing this book.

I would like to render my heartfelt gratitude to my parents, my wife Bindiya
M.K. and My daughter Aditi Mohan and my son Adithya Mohan for their kind
cooperation, valuable moral support and encouragement given to me and the role
they have played in completing my book.

I am grateful to all my friends, collegues and others who are directly or indirectly
involved for their inspiration, encouragement and support to successfully complete
this book.

Finally I convey my thanks to publisher of this book, for their constructive
critism and suggestions for improvement in the manuscript.

H.S. Mohan

AR, T B SEBEPDRIE 7 1A) : www. ertongbook. com

CONTENTS

PHCL LI v onemassnsrmanssasmonssssms sn st 4 GRS EASE RIS H R4V o I B PR PSR vii
ACknowledgementscccccovicviiiiiiiiniiiiiiiiniiini e ix
Introduction to COMPIlerscccceervsunessrneerssnsecsensressanaccsacsascnes 1.1—1.10
1.1 ComplleISicissmussasummmsmnemsrsssmsmssmsmessessmnsmsamonmsivesasers 1.1
12 IOthef APPlICAtIONS ..ucmsusimicissminssssssmssissmrmsrssmmesssmvevrssassns 1.1
1.3 A Language Processing Systemcccccoueviinniriiiininiiiciieinsneiene 1.2
1.4 The Structure of a Compiler or Phases of a Compiler...................... 1.3
1.5 Compiler Construction TOOIS.........ccoovimnriviieniiniiineiiinrseecnssens 1.8
1.6 The Evolution of Programming Languages................o.cce.ceveecirierens 1.9
1.7 Applications of Compiler Technology...........cccccocivimimnniniiiniacnnnn. 1.10
Lexical Analysis ..cc.cccoeceenesnnecsecescsnenes w.2.1—2.10
2.1 Role of the Lexical ANALYZEL . ..icivossisorsesssssssssianssranssonnssssansssssasssssse 2.1
2.2 Tokens, Patterns and LeXemMeS........cccocvvvviivviniiniininineiesiee e 22
2.3 Input Buffering.........ccoooiciiiiiiiiiiiiicicciiiiiciiin s 2.3
24. Specification Of TOKeMS . s s srmssssssimensissusssomyimss e 2.4
2.9 Repuls Deliitions s eemanonmemmmmssmammmameannames 2.5
Syntax AnalySis—Iccececvenirernicnsiniesrenneinessesssonisssanssnsssssnssnesasnces 3.1—3.56
3.1 INtrOdUCHION. ..ottt bbb 3.1

3.2 Context-Free Grammer: (CFG)......cccoevrviiiiiiiiiiiciininiineiiniiins 33

Xii

CONTENTS

3.3 Leftmost and Rightmost Derivations.............ccccvvueueereeeeecreerseseen. 3.7
3.4 Context Free Grammar Versus Regular Expressions...................... 3.15
3.5 Left RECUISION.coiiiiiiieiieiceice ettt 3.19
3.6 Left FACIOTING. ..c..coiiiiiiciiiiiceceseee et eier s s srsenan e e 3.25
3.7 Parsing TeChNIQUESccccuevreriiiiierieriiece st eve e 3.29
3.8 Error Recovery in Predictive Parsingccocooveeverrivivccciiennnnn. 3.47
Syntax AnalySis—IL.......ccccviniinciimnissnicnsicisensesinnnnscsseseessaesensssnsenes 4.1—4.30
4.1 Bottom—UpP—Parsing...........cccorrirrriiiiiiiiris i ssseee s sessresesesess 4.1
4.2 HANAIES s svsisissinisivaremmesmsmmsnsnssrsesnsmsonssmmunessssensmsersrensarsrossansusyasasss 4.4
4.3 Shift RedUCE ParSer.....ccciuivsmmisaisiniemmsmararsresssmsssrsssssesssncsesnennsnassens 4.6
4.4 Conflicts During Shift-Reduce Parsing...............cccveveeveieeuvreneenn. 4.9
4.5 Introduction to LR Parsing............ccc.covvverieiovciienieinsesssseseseneenns 4.10
4.6 Viable PrefiXeSccccvivuiivrnreiinieenesisisnincceeess s s s senenens 4.29
Syntax Analysis—III TS HASS T Taes s nssenssazssasen 5.1—5.24
5.1 More Powerful LR Parsers.........cococoveeiiinnniieiiciiecnis e 5.1
5.2 LALR Parser (Lookahead LR Parser)............ccccoevveeueecrecineerenennn. 5.8
5.3 Using Ambigous Grammar to (Reduce) Resolve Shift

Reduce Conflict.........coceviiiiiieiiieiice s 5.19
Syntax Directed Translation..... . .6.1—6.26
6.1 Syntax Directed Definition (SDD).......c..coceeoiievieeeeeieeeieseee e, 6.1
6.2 Evaluation Orders for SDDScc.occooviiuivievieeecceeeeeccece e 6.11
6.3 Applications of Syntax Directed Translation..............c.ccecoeuevnne... 6.16
Intermediate—Code Generationcceccecveverercnecrerncncenneneenees 7.1—7.36
7.1 INtrOUCTIONcvviviiiiciicn ettt s s ene e erserecnas 71
7.2 Directed Acylic Graphs for Expressions (DAG)ccoccuvvveueee.. 7.2
7.3 Implements of Three-Address Codes.......c..coooevvuenrieiecininecieeceennnn. 7.6
did TYPE CHECKINE ssssswnsmsmomerisvismerssvspessmmssennessimms s shismsisamens i 7.10
Tod UMBCEHON visumsummsecsmmamessrassisessaminsmsssssrmms st asssasiisis s o 7.12
76 Syntax Directed TtanSlation. .. ussssisssiswmmsmsssssmn mersssanssnsnanason 7.13
7.7 Evaluation Orders for SDDScccoccoiiimieiiniiinieriereereeee e 7.23
7.8 Applications of Syntax Directed Translation...........c..ccccocveuveennenn... 7.28
7.9 Syntax-Directed Translation Schemes (SDT’S)ccoeeevveveerierienens 7.33
7.10 Eliminating Left Recursion from SDT’S..........cccecvieviecvevieeeein, 7.36
Run-Time Environmentscccccccviincsnsiessncssissesssscassassanssasssnscnnans 8.1—8.15

8.1 Storage Organization.........c..ccocueiuerieiereioeiienieieeeieseeeseeseesesseneesnens 8.1

CONTENTS Xiii

8.2 Stack Allocation of SPacec.cceeviiiiciieriiieiisieeieeeceeeer e, 8.3
8.3 Access to Nonlocal Data on the Stack...........ccccooveveverivrieececcnrnnen. 8.7
8.4 Heap Managementc.cocevevviririnisiereeiesessisnsseescsessesssesssnesensseenas 8.9
8.5 Introduction to Garbage Collectioncceoeveeivereerierecnerennn, 8.12
APPENAIX............oocvivivivivieissisisee i A.1—A.7

TNACX ...ttt e Ii—L2

CHAPTER

INTRODUCTION TO COMPILERS

1.1 COMPILERS

A Compiler is a program, takes a program written in a source language and
translates it into equivalent program in a target language.

Source program Target program
—_— Compiler —>
(Normally a program (Normally the equivalent
written in high level program in m/c code
language) relocatable object file)

1.2 OTHER APPLICATIONS

In addition to the development of Compiler, the techniques used in compiler
design can be applicable to many problems in Computer Science.

1. Techniques used in Lexical Analyzer can be used in Text editors,
information retrieval system and Pattern Recognition Programs.

2. Techniques used in a parser can be used in a query processing system
such as SQL.

3. Many software having a complex front end may need techniques used in
Compiler Design.

1.2 COMPILER DESIGN

4. Most of the techniques used in Compiler Design may be used in Natural
Language Processing (NLP) Systems.

If the target program is an executable Machine language program. It can
then be called by the user to process inputs and process outputs.

Input Target Output
» program >

An interpreter is another common kind of Language Processor. Instead
of producing a target program as a transition an interpreters appear to directly
execute the operations specified in the source. Program on inputs supplied by
the user.

Source program

Output
Interpreter

Input

Example
A java language Processor combine compilation and interpretation.

A Java Source Program may first be compiled into an intermediate form
called Byte Code. The Byte codes are then interpreted by a virtual machine.

l Source program
Translator
Intermediate ———— Virtual Output
program | machine
Input

Figure: A hybrid compiler

1.3 A LANGUAGE PROCESSING SYSTEM

In addition to a compiler, several other Programs may be required to create an
executable Target Program as shown in figure.

e A source program may be divided into modules stored in seperate files.
The task of collecting the source program is sometimes entrusted to
a seperate program called a preprocessor. The preprocessor may also
expand shorthands called Macros.

