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Nonlinear Physical Science focuses on recent advances of fundamental theories and
principles, analytical and symbolic approaches, as well as computational techniques
in nonlinear physical science and nonlinear mathematics with engineering applica-
tions.

Topics of interest in Nonlinear Physical Science include but are not limited to:

- New findings and discoveries in nonlinear physics and mathematics

- Nonlinearity, complexity and mathematical structures in nonlinear physics

- Nonlinear phenomena and observations in nature and engineering

- Computational methods and theories in complex systems

- Lie group analysis, new theories and principles in mathematical modeling

- Stability, bifurcation, chaos and fractals in physical science and engineering

- Nonlinear chemical and biological physics

- Discontinuity, synchronization and natural complexity in the physical sciences
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Preface

This book discusses discretization of differential equations of continuous nonlinear
systems and implicit mapping dynamics of periodic flows to chaos. In recent years,
approximate analytical solutions for periodic motions to chaos in continuous
nonlinear systems were developed by the author through finite Fourier series.
However, for many nonlinear dynamical systems, it is difficult to achieve such
approximate analytical solutions of periodic motions to chaos. With computer
extensive applications in numerical computations, one has used the discrete forms
of differential equations of nonlinear systems to obtain numerical solutions via
recurrent iterations. The discrete forms in recurrent iterations will cause accumu-
lated computational errors for numerical results. Once the iteration number
increases, numerical results given by the discrete forms cannot approximately
represent true solutions of nonlinear dynamical systems. To improve the compu-
tational accuracy, one has tried to adopt implicit maps as discrete forms to achieve
numerical results. However, such implicit mapping forms cannot be iterated
directly, which cause the difficulty to extensive applications of discrete implicit
maps in continuous nonlinear systems. In this book, the author would like to
systematically discuss implicit mapping dynamics of periodic motions to chaos in
continuous dynamical systems, and discrete Fourier series based on the discrete
nodes of periodic motions will be used to obtain the harmonic responses in fre-
quency space, which can be measured from experiments.

This book includes six chapters. In Chap. 1, a brief literature survey is
completed. Chapter 2 reviewed the nonlinear theory for stability and bifurcation of
fixed points in discrete nonlinear systems. In Chap. 3, discretization of differential
equations is discussed comprehensively. The explicit and implicit discrete schemes
in nonlinear dynamical system are discussed through one-step and multi-step
discretization of differential equations, and the corresponding stability and con-
vergence of the explicit and implicit discrete maps are discussed. In Chap. 4,
implicit mapping dynamics of period-m fixed points in discrete dynamical systems
are discussed with positive and negative discrete maps, and the complete solutions
of Ying-Yang states of period-m fixed points are presented. In Chap. 5, the
methodology for the solutions of periodic motions in continuous dynamical systems
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with/without time delay is presented through the mapping dynamics of discrete
implicit mappings under specific truncated errors. The discrete Fourier series of
periodic motions are discussed from discrete nodes of periodic motions, and the
corresponding approximate analytical expression can be obtained. Harmonic
amplitude quantity levels can be analyzed for periodic motions in continuous
nonlinear systems. Chapter 6 discusses the bifurcation trees of periodic motions to
chaos in the Duffing oscillator to demonstrate the implicit mapping dynamics of the
discretized Duffing oscillator. Such semi-analytical results of periodic motions in
the Duffing oscillator are compared with the approximate analytical solutions of
periodic motions based on the finite Fourier series solutions.

Finally, I would like to appreciate my former student, Dr. Yu Guo, for com-
pleting all numerical computations. Herein, I thank my wife (Sherry X. Huang) and
my children (Yanyi Luo, Robin Ruo-Bing Luo, and Robert Zong-Yuan Luo) for
their understanding and infinite support.

Albert C.J. Luo
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Chapter 1
Introduction

For solutions of periodic motions in nonlinear dynamical systems, analytical and
numerical techniques have been adopted. The analytical methods include the
method of averaging, perturbation methods, harmonic balance method, and gen-
eralized harmonic balance method. Through the analytical methods, one can obtain
the analytical expressions of approximate solutions of periodic motions in
dynamical systems. The numerical methods are based on discrete maps obtained by
discretization of differential equations for dynamical systems. The discrete maps
include explicit and implicit maps. The explicit maps can be directly used to obtain
numerical solutions of differential equations for dynamical systems, but the com-
putational errors for the recurrence iteration of explicit maps will be accumulated in
numerical results. Once the recurrence iteration times become large, the numerical
results may not be adequate for numerical solutions of dynamical systems. Herein,
implicit maps will be used to develop mapping structures for periodic motions. The
implicit maps cannot be simply used by the recurrence iteration. For periodic flows
in nonlinear dynamics, mapping structures based on implicit maps can be devel-
oped. Of course, an explicit mapping can be expressed by an implicit map as a
special case. Based on the mapping structures, analytical prediction of periodic
flows in nonlinear dynamical systems can be completed. The mapping structure
gives a set of nonlinear algebraic equations, which can be solved. Without the
recurrence iteration, the solution errors of node points of periodic flows are fixed
without computational errors caused by iterations. The purpose of this book is to
develop a semi-analytical method for periodic flows to chaos in nonlinear
dynamical systems with/without time delay through implicit mapping structures.

1.1 A Brief History

To determine periodic flows in nonlinear dynamical systems, existing techniques
for periodic motions in nonlinear systems are reviewed briefly. The analytical
methods for periodic motions are discussed first. Lagrange (1788) developed the
method of averaging for periodic motions in the three-body problem as a pertur-
bation of the two-body problem. The idea is based on the solutions of linear

1



2 1 Introduction

systems. Such an idea was further extended by Poincare in the end of the nineteenth
century. Thus, Poincare (1899) developed the perturbation theory for motions of
celestial bodies. van der Pol (1920) used the method of averaging for the periodic
solutions of oscillation systems in circuits. Such an application caused great interest
in the perturbation theory for the approximate analytical solution of periodic
motions in nonlinear systems. Until 1928, the asymptotic validity of the method of
averaging was not proved. Fatou (1928) gave the proof of the asymptotic validity
through the solution existence theorems of differential equations. Krylov and
Bogoliubov (1935) further developed the method of averaging, and the detailed
presentation was given in Bogoliubov and Mitropolsky (1961). Hayashi (1964)
presented the perturbation methods including averaging method and principle of
harmonic balance. Barkham and Soudack (1969) extended the Krylov—Bogoliubov
method for the approximate solutions of nonlinear autonomous second-order dif-
ferential equations [also see, Barkham and Soudack (1970)]. Nayfeh (1973)
employed the multiple-scale perturbation method to develop approximate solutions
of periodic motions in the Duffing oscillators. Holmes and Rand (1976) discussed
the stability and bifurcation of periodic motions in the Duffing oscillator. Nayfeh
and Mook (1979) used the perturbation method to investigate nonlinear structural
vibrations, and Holmes (1979) demonstrated chaotic motions in nonlinear oscilla-
tors through the Duffing oscillator with a twin-well potential. Ueda (1980)
numerically simulated chaos by period-doubling of periodic motions of Duffing
oscillators. A generalized harmonic balance approach was used by Garcia-Margallo
and Bejarano (1987) to determine approximate solutions of nonlinear oscillations
with strong nonlinearity. Rand and Armbruster (1987) determined the stability of
periodic solutions by the perturbation method and bifurcation theory. Yuste and
Bejarano (1989) employed the elliptic functions instead of trigonometric functions
to extend the Krylov—Bogoliubov method. Coppola and Rand (1990) used the
averaging method with elliptic functions for approximation of limit cycle. Wang
et al. (1992) used the harmonic balance method and the Floquet theory to inves-
tigate the nonlinear behaviors of the Duffing oscillator with a bounded potential
well [also see, Kuo et al. (1992)]. Luo and Han (1997) determined the stability and
bifurcation conditions of periodic motions of the Duffing oscillator. However, only
symmetric periodic motions of the Duffing oscillators were investigated. Luo and
Han (1999) investigated the analytical prediction of chaos in nonlinear rods through
the Duffing oscillator. Peng et al. (2008) presented the approximate symmetric
solution of period-1 motions in the Duffing oscillator by the harmonic balance
method with three harmonic terms. Luo (2012a) developed a generalized harmonic
balance method for the approximate analytical solutions of periodic motions and
chaos in nonlinear dynamical systems. This method used the finite-term Fourier
series to approximately express periodic motions, and the coefficients are time-
varying. With averaging, a dynamical system of coefficients is obtained, and from
such a dynamical system, the approximate solutions of periodic motions are
achieved and the corresponding stability and bifurcation analysis are completed.
Luo and Huang (2012a) used such a generalized harmonic balance method with
finite terms for the analytical solutions of period-1 motions in the Duffing oscillator
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with a twin-well potential. Luo and Huang (2012b) also employed a generalized
harmonic balance method to find analytical solutions of period-m motions in such a
Duffing oscillator. The analytical bifurcation trees of periodic motions in the
Duffing oscillator to chaos were obtained [also see, (Luo and Huang 2012c, d,
2013a, b, c, d)]. Such analytical bifurcation trees show the connection from periodic
solution to chaos analytically. For a better understanding of nonlinear behaviors in
nonlinear dynamical systems, analytical bifurcation trees of period-1 motions to
chaos in a periodically forced oscillator with quadratic nonlinearity were presented
in Luo and Yu (2013a, b, 2015), and period-m motions in the periodically forced
van der Pol equation were presented in Luo and Laken (2013). The analytical
solutions of periodic oscillations in the van der Pol oscillator can be used to verify
the conclusions in Cartwright and Littlewood (1947) and Levinson (1948). The
results for the parametric quadratic nonlinear oscillator in Luo and Yu (2014)
analytically show the complicated period-1 motions and the corresponding bifur-
cation structures. The detailed presentation for analytical methods for periodic flows
in nonlinear dynamical systems can be found in Luo (2014a, b).

In recent years, time-delayed systems are of great interest since such systems
extensively exist in engineering (e.g., Tlusty 2000; Hu and Wang 2002). The
infinite dimensional state space causes the significant difficulty to solve such time-
delayed problems. Thus, one used numerical methods for the corresponding com-
plicated behaviors. On the other hand, one is interested in the stability and bifur-
cation of equilibriums of the time-delayed systems (e.g., Stepan 1989; Sun 2009;
Insperger and Stepan 2011). In addition, one is also interested in analytical solu-
tions of periodic motions in time-delayed dynamical systems. Perturbation methods
have been used for such periodic motions in delayed dynamical systems. For
instance, the approximate solutions of the time-delayed nonlinear oscillator were
investigated by the method of multiple scales (e.g., Hu et al. 1998; Wang and Hu
2006). The harmonic balance method was also used to determine approximate
solutions of periodic motions in delayed nonlinear oscillators [e.g., MacDonald
(1995); Liu and Kalmar-Nagy (2010); Lueng and Guo (2014)]. However, such
approximate solutions of periodic motions in the time-delayed oscillators are based
on one or two harmonic terms, which are not accurate enough. In addition, the
corresponding stability and bifurcation analysis of such approximate solutions of
periodic motions may not be adequate. Luo (2013) presented an alternative way for
the accurate analytical solutions of periodic flows in time-delayed dynamical sys-
tems (see also, Luo 2014c). This method is without any small-parameter require-
ment. In addition, this approach can also be applied to the coefficient varying with
time. Luo and Jin (2014a) analytically presented the bifurcation tree of period-1
motions to chaos in a periodically forced, time-delayed quadratic nonlinear oscil-
lator. Luo and Jin (2014b, c, d) discussed the bifurcation trees of period-m motions
to chaos in the periodically forced Duffing oscillator with a linear time-delayed
displacement.

From the literature survey, for some simple nonlinear systems, the approximate
analytical solutions of periodic motions can be obtained. However, for most of the
nonlinear dynamical systems, it is very difficult to obtain analytical solutions of
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periodic motions. Thus, numerical results of periodic motions in complicated
nonlinear dynamical systems become very significant in engineering. In fact,
human being has a long history as old as human civilization to use numerical
algorithms to get approximate numerical results instead of exact results. For
instance, the Rhind Papyrus of ancient Egypt describes a root-finding method for
solving a simple equation in about 1650 BC, and Archimedes of Syracuse (287-212
BC) used numerical algorithm to approximately compute lengths, areas, and vol-
umes of geometric figures. Based on the ideas and spirits of numerical approxi-
mations, Isaac Newton and Gottfried Leibnitz developed the calculus by
infinitesimal elements to linear approximation and infinitesimal summarization to
integration. Because of calculus development, one can describe more complicated
mathematical models for real physical problems, but it is very difficult to solve such
accurate mathematical models explicitly. This is an important impetus for one to
develop numerical methods to get approximate solutions of the accurate mathe-
matical models. Thus, Newton developed several numerical methods to find
approximate solutions. For instance, numerical methods for root-finding and
polynomial interpolation were developed by Newton. Since then, Euler (1707-
1783), Lagrange (1736-1813), and Gauss (1777-1855) further developed numer-
ical methods for approximate results, such as Euler method for differential equa-
tions, Lagrange interpolation method, and Gauss interpolation. The more detailed
information about numerical methods can be found in Goldestine (1977).

This book will focus on numerical methods for nonlinear dynamical systems. For
this issue, Euler developed an explicit method to achieve approximate solutions
numerically. Such Euler method is a one-step discrete method. This method is still
used in numerical computation, but its computational accuracy is very low, and
numerical solutions are not accurate. Bashforth and Adams (1883) presented a multi-
step discrete method for numerical solutions of differential equations. Moulton (1926)
extended such a method to the Adams—-Moulton method. The Adams—Bashforth
method is the explicit method as a predictor, and the Adams—Moulton method is the
implicit method as a corrector. In addition, the Adams—Bashforth method can be
extended for the practical application of the Taylor series method as presented in
Nordsieck (1962). Milne (1949) used the entire interval for integration based on
Newton—Cotes quadrature formulas. The recent theory of linear multi-step method
was systematically discussed by Dahlquist (1956, 1959). The general formulas were
presented, and the corresponding consistency, stability, and convergence were dis-
cussed by the linear stability theory. Runge (1895) started modern one-step methods
with the order of two and three for numerical solutions of differential equations. Heun
(1900) raised the order of the method from two and three to four. Kutta (1901) gave the
formulation of the method with the order conditions. Nystrom (1925) made the cor-
rection of the fifth-order method of Kutta and showed how to apply the Runge-Kutta
method to the second-order differential equations. Butcher (1963) discussed the
coefficients of Runge—Kutta method, and the implicit Runge—Kutta methods were
presented in Butcher (1964, 1975).

With extensive applications of computers, numerical computations become very
popular to obtain numerical results for differential equations through discretization.
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Once the discrete maps are obtained for dynamical systems, discrete dynamical
systems can be used to investigate nonlinear dynamics of dynamical systems. Based
on nonlinear maps, one discovered the existence of chaotic motions in nonlinear
dynamical systems through iteration of discrete maps.

In 2005, Luo (2005a, b) presented a mapping dynamics of discrete dynamical
systems which is a more generalized symbolic dynamics. The systematical
description of mapping dynamics in discontinuous dynamical systems was pre-
sented in Luo (2009). The discrete maps can be any implicit and/or explicit func-
tions rather than explicit maps in numerical iterative methods only. From discrete
mapping structures, periodic motions in discrete dynamical systems can be pre-
dicted analytically, and the stability and bifurcation analysis of periodic motions in
nonlinear dynamical systems can be completed. Such an idea was applied to dis-
continuous dynamical systems in Luo (2009, 2012b, c).

1.2 Book Layout

The main body in this book will discuss discretization of differential equations of
nonlinear continuous dynamical systems to obtain implicit maps for periodic flows.
The mapping structures will be employed to analytically predict the periodic flows
in nonlinear continuous systems, and the corresponding stability and bifurcation
can be discussed.

In Chap. 2, a theory for nonlinear discrete systems is reviewed. The local and
global theories of stability and bifurcation for nonlinear discrete systems are dis-
cussed. The stability switching and bifurcation on specific eigenvectors of the
linearized system at fixed points under a specific period are presented. The higher
order singularity and stability for nonlinear discrete systems on the specific
eigenvectors are discussed.

In Chap. 3, the discretization of continuous systems is presented. The explicit
and implicit discrete maps are discussed for numerical predictions of continuous
systems. Basic discrete schemes are presented which include forward and backward
Euler methods, and midpoint and trapezoidal rule methods. An introduction to
Runge—Kutta methods is presented, and the Taylor series method and second-order
Runge-Kutta method are introduced. The explicit Runge—-Kutta methods for third
and fourth order are systematically presented. The implicit Runge—Kutta methods
are discussed based on the polynomial interpolation, which include a generalized
implicit Runge—Kutta method, Guass method, Radau method, and Lotta methods.
In addition to one-step methods, implicit and explicit multi-step methods are dis-
cussed, including Adams—Bashforth method, Adams-Moulton methods, and
explicit and implicit Adams methods.

In Chap. 4 presented is a Ying—Yang theory for implicit, discrete, nonlinear
systems with consideration of positive and negative iterations of discrete iterative
maps. In existing analysis, the solutions relative to “Yang” in nonlinear dynamical
systems are extensively investigated. However, the solutions pertaining to “Ying”
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in nonlinear dynamical systems are not discussed too much. A set of concepts on
“Ying” and “Yang” in implicit, nonlinear, discrete dynamical systems are intro-
duced. Based on the Ying—Yang theory, the complete dynamics of implicit discrete
systems can be discussed. A discrete dynamical system with the Henon map is
investigated as an example. Period-m solutions, stability, and bifurcations for multi-
step, implicit discrete systems are discussed.

In Chap. 5, periodic flows in continuous nonlinear systems are discussed through
discrete implicit mappings. The period-1 flows in nonlinear systems are discussed
by the one-step discrete maps, and then, the period-m flows in nonlinear dynamical
systems are also discussed through the one-step discrete maps. Multi-step, implicit
discrete maps are employed to discuss the period-1 and period-m motions in
nonlinear dynamical systems. Periodic flows in nonlinear time-delayed dynamical
systems are discussed with time-delay discrete nodes interpolated by two non-delay
discrete nodes. In addition, periodic flows in time-delayed nonlinear dynamical
systems are also discussed through the delay nodes determined by integration.
Through the discrete nodes in periodic flows, the periodic flows are approximated
by the discrete Fourier series and the frequency space of the periodic flows can be
determined through amplitude spectrums.

In Chap. 6, periodic motions in the Duffing oscillator are discussed through the
mapping structures of discrete implicit maps. The discrete implicit maps are
obtained from the differential equation of the Duffing oscillator. From mapping
structures, bifurcation trees of periodic motions are predicted analytically through
nonlinear algebraic equations of implicit maps, and the corresponding stability and
bifurcation analysis of periodic motions in the bifurcation trees are presented. The
bifurcation trees of periodic motions are also presented through the harmonic
amplitudes of the discrete Fourier series. Finally, from the analytical prediction,
numerical simulation results of periodic motions are performed to verify the ana-
lytical prediction. The harmonic amplitude spectrums are also presented, and the
corresponding analytical expression of periodic motions can be obtained
approximately.
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