Keller-Box Method and
Its Application

11

LI

Keller-Box 75 3% /% 3

EEEEEEEEEEEEEEEEEEEE



Kuppalapalle Vajravelu

Kerehalli V. Prasad

Keller-Box Method and
Its Application

Keller-Box ﬁ?ﬁ&ﬁ;@ﬁﬁ

BERF e it m

HIGHER EDUCATION PRESS  BEWING

S, . ) i ]' '-“.‘1
H N L
—4 By W
,‘}ﬁ :]L:y L

g



Author

Kuppalapalle Vajravelu Kerehalli Vinayaka Prasad

Department of Mathematics Department of Studies in Mathematics
University of Central Florida Vijayanagara Sri Krishnadevaraya University
Orlando, Florida 32816-1364 Jnana Sagara Campus, Vinayaka Nagar

USA Bellary- 583 105

Karnataka India

© 2014 Higher Education Press Limited Company, 4 Dewai Dajie, 100120, Beijing, P.R. China

EHEM®E (C1P) #iE

Keller—Box J7 1 M W ] = Keller—Box method and
its application : B/ (/g) FORE I A4ES
(qur'lvc‘lu K.), (HJ ) H A (Prasad, K. V) =
——Jbnt: e ‘LHQ%L, 2014. 1

CIELEVE IR 7 Bk (HR L) O BLAE S
4 )

ISBN 978—=7—04—038891—6

[ DK~ . O @i M. OELRVERIE -
s—se V. D o3l

R R A 151 cIp sk (2013) 5 280160 &

FlgwhE i T E OB FHEALT M DFERE N R R A
DR e THTEIH] B

HIRRCAAT S Hh bt PRI 400—-810-0598

#: Hl Abnili PR ES KT 4 5 &) HE http/www.hep.edu.cn
MRS 100120 http://www.hep.com.cn

2] Wl Avs b RIEIRIAE PR A &) fd 1T http://www.landraco.com

I A 787mmx 1092mm 1/16 http://www. |dﬂdl‘ﬁ€0 com.cn
B 5k 26 Bk W 2014 41T

T 460 T Bl Wk 2014 1 HE m\.umm
IR 010-58581118 M 89.00 L

A AT ERTT, (BT . DTS oA, IR P S B A JER A
FORR A (=2EAT
Yok S 38891-00

Sales only inside China

OB A o R T P A
AP IHEAMEH De Gruyter fuot /e [H 2 AR kA 4, ISBN Jy 978 3-11-027137-9



NONLINEAR PHYSICAL SCIENCE
R MR F



NONLINEAR PHYSICAL SCIENCE

Nonlinear Physical Science focuses on recent advances of fundamental theories and
principles, analytical and symbolic approaches, as well as computational techniques
in nonlinear physical science and nonlinear mathematics with engineering applica-
tions.

Topics of interest in Nonlinear Physical Science include but are not limited to:

- New findings and discoveries in nonlinear physics and mathematics

- Nonlinearity, complexity and mathematical structures in nonlinear physics

- Nonlinear phenomena and observations in nature and engineering

- Computational methods and theories in complex systems

- Lie group analysis, new theories and principles in mathematical modeling

- Stability, bifurcation, chaos and fractals in physical science and engineering

- Nonlinear chemical and biological physics

- Discontinuity, synchronization and natural complexity in the physical sciences

SERIES EDITORS

Albert C.J. Luo Nail H. Ibragimov

Department of Mechanical and Industrial Department of Mathematics and Science
Engineering Blekinge Institute of Technology
Southern Hlinois University Edwardsville S-371 79 Karlskrona, Sweden
Edwardsville, IL 62026-1805. USA Email: nib@hth.se

Email: aluo@siue.edu

INTERNATIONAL ADVISORY BOARD

Ping Ao, University of Washington. USA: Email: aoping@u.washington.edu

Jan Awrejcewicz, The Technical University of Lodz, Poland: Email: awrejeew @ p.lodz.pl

Eugene Benilov, University of Limerick. Treland: Email: Eugene.Benilov@ulice

Eshel Ben-Jacob, Tel Aviv University. Isracl: Email: eshel @ tamaritau.ac.il

Maurice Courbage, Université Paris 7. France: Email: maurice.courbage @ univ-paris-diderot.fr

Marian Gidea, Northeastern lllinois University, USA: Email: mgidea@neiu.edu

James A. Glazier, Indiana University, USA: Email: glazier@indiana.edu

Shijun Liao, Shanghai Jiaotong University, China: Email: sjliao@sjtu.edu.cn

Jose Antonio Tenreiro Machado, ISEP-Institute of Engineering of Porto. Portugal; Email: jim@dee.isep.ipp.pt
Nikolai A. Magnitskii, Russian Academy of Sciences. Russia: Email: nmag@isaru

Josep J. Masdemont, Universitat Politecnica de Catalunya (UPC), Spain: Email: josep@harquins.upe.edu
Dmitry E. Pelinovsky, McMaster University. Canada: Email: dmpeli@ math.memaster.ca

Sergey Prants, V.1.1I"ichev Pacific Oceanological Institute of the Russian Academy of Sciences. Russia;
Email: prants @ poi.dvo.ru

Victor 1. Shrira, Keele University, UK; Email: v.i.shrira@keele.ac.uk

Jian Qiao Sun, University of California. USA: Email: jgsun@uemerced.cdu

Abdul-Majid Wazwaz, Saint Xavier University, USA: Email: wazwaz@sxu.edu

Pei Yu, The University of Western Ontario. Canada: Email: pyu@uwo.ca



Preface

During the past decades there has been an increased interest in solving sys-
tems of nonlinear differential equations associated with physical problems.
Throughout engineering and technological industries, we are confronted with
nounlinear boundary-value problems that cannot be solved by analytical meth-
ods. Although remarkable progress has been made in developing new and
powerful techniques for solving the nonlinear differential equations, notably
in the fields of fluid mechanics, biology, finance, aerospace engineering, chem-
ical. and control engineering, much remains to be done.

In the present book, we highlight the development, analysis and applica-
tion of the finite difference technique, the Keller-box method. for the solution
of coupled nonlinear boundary-value problems. We have tried to present an
account of what has been accomplished in the field to date. Accordingly, we
shape this book to those interested in the Keller-box method as a working
tool for solving physical and engineering problems.

This book can help the reader develop the toolset needed to apply the
method. without sifting through the endless literature on the subject. Issues
of finite differences. converting a system to first order differential equations,
linearization by Newton’s method, initial approximations, some basic numeri-
cal techniques, and obtaining a tridiagonal system by the Thomas algorithm,
are discussed heuristically. As mentioned above, there are plenty of appli-
cations of the Keller-box method in the literature. In selecting applications
and specific problems to work through, we have restricted our attention to
fluid flow and heat transfer phenomena. Hence, in order to illustrate various
properties and tools useful when applying the Keller-box method, we have
selected recent research results in this area.

We appreciate the support and motivation of the editor A.C.J. Luo. We
also acknowledge the role of Higher Education Press (China) and de Gruyter
for making this book a reality. Last but not the least, we thank Prof. Mike
Taylor for reading the manuscript and suggesting some needed changes.

Orlando. Florida K. Vajravelu
K.V. Prasad
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Chapter 0

Introduction

Nature is in essence nonlinear. Many fundamental laws in science and engi-
neering are modeled by nonlinear differential equations. The origin of nonlin-
ear differential equations is very old, but it has been undergone remarkable
new developments in the field of nonlinear equations for last few decades.
One of the main impulses, among others for developing nonlinear differ-
ential equations has been the study of boundary layer equations. At high
Reynolds number, the effect of viscosity is confined to a layer near the wall
where the velocity changes are very large. Prandtl was the pioneer in de-
veloping a theory by employing what are now called the boundary layer
assumptions. Mathematical analyses based on these assumptions of many
physical problems in fluid mechanics agree well with the experimental obser-
vations. These equations are derived from the Navier-Stokes equations which
describe the behavior of the fluid using boundary layer approximation. Using
similarity transformations, these equations can be converted into nonlinear
coupled ordinary differential equations (ODEs) or partial differential equa-
tions (PDEs). Their solution structure demands sophisticated analytical or
numerical schemes. The analysis of flow and heat transfer over an infinite
range occurs in many branches of science and technology. The fluid veloc-
ity satisfies higher order nonlinear differential equations depending on the
stress-strain relation. In some instances one is able to obtain exact analyti-
cal solutions. When exact or analytical solutions are obtained, one is often
faced with difficulty generalizing such results to other nonlinear differential
equations. In many situations one is compelled to develop a good numerical
scheme, fast as well as accurate, in order to obtain approximate solution to
these coupled equations. Obtaining such numerical schemes to solve these
coupled ODEs/PDEs for all prevailing physical parameters is the key point
of this book.

Due to the difficulties of the problems, we frequently seek to obtain nu-
merical solutions to a nonlinear problem, valid over some restricted region in
the domain of the original problem. One such technique, which has shown a
great promise over the past few years, is the Keller-box method. By use of
the box method, numerous nonlinear differential equations have been studied
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in great detail. Like many other finite difference methods, the box method is
very useful as it allows us to obtain numerical solutions to systems of non-
linear differential equations. The finite difference method is unique among
other numerical techniques as it allows us to effectively control the rate of
convergence via an initial approximation and then proceeds as follows:

reducing them to a system of first order equations:

writing the difference equations using central differences:
linearization of the algebraic equations by Newton’s method;

writing them in matrix form; and

finally solving the system by block tridiagonal elimination technique.

However, such great freedom comes with the dilemma of deciding just
how to proceed. There have been a number of nonlinear differential equa-
tions to which the box method has been applied. However the selection of
initial approximation varies greatly for different values of the non-dimensional
parameters. That said, there are some underlying themes that become appar-
ent when one examines the literature on the topic. Building on such themes,
we hope to add some structure and formality to the application of nonlinear
flow phenomena. In particular, we discuss several features of the method and
the choices one can make in the initial approximation, far field conditions,
and the convergence criteria.

We hope that the book helps in achieving this long range goal. We present
a number of ways in which one may select the initial conditions, far field
boundary conditions, and the convergence criteria while solving a nonlin-
ear differential equation by the finite difference method. We also focus our
attention on the properties of solutions resulting from such a choice of the ini-
tial approximation, far field conditions, and the convergence criteria. These
choices play a large role in the computational efficiency.

We primarily discuss nonlinear ordinary differential equations associated
with finite differences. However, such discussion is usually general enough
to use for solving nonlinear partial differential equations as well as ordinary
differential equations. We discuss many cases in general while still maintain-
ing applicability of the results to actually computing solutions via the finite
difference method. As frequent users of the method, we understand the im-
portance of implementing the presented method.

We note that a good companion to this book will be that of Cebeci and
Bradshaw [1] which gives physical and computational aspects of convective
heat transfer, and some guidelines to solve the boundary value problems.
The first half of the book presents the finite difference method and how to
implement the box method [2] [4].

The outline of the book will be as follows:

In Chapters 1-3, which comprise Part 1 of the book, we sketch the Keller-
box method. This first set of chapters serves as a summary to the method
which can be directly employed by researchers in engineering, applied physics,
and other applied sciences. We keep the discussion general enough so as to
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provide a framework for researchers. In order to give the reader the best
preparation for using the method, we realize that often the best way to convey
information is through worked out examples.

[n Part II of the book, Chapters 46, we shift to examples by considering
problems in fluid mechanics and heat transfer governed by nonlinear differen-
tial equations [5]-[10]. Such examples will benefit the reader in applying the
methods to actual problems of physical relevance. We group such problem
into three categories: general fluid flow and heat transfer problems (Chapter
4). coupled nonlinear problems (Chapter 5)., and more advanced problems
(Chapter 6).
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Chapter 1

Basics of the Finite Difference

Approximations

In this chapter we introduce the essentials of finite difference approximations
for solving linear /nonlinear differential equations. In Section 1.2, we study the
time-dependent differential equations beginning with the initial value prob-
lem and then present some theoretical issues pertaining to the equations.
Oftentimes when dealing with nonlinear differential equations, the questions
of the existence and uniqueness of a solution are of importance, and invet-
erate. Section 1.3, deals with the discretization of the differential equations
and the solution processes for the coupled boundary value problems (BVPs).
Further, it also explains the differences between the single-step and multi-
step methods of solving BVPs. In Section 1.4, we extend the ideas of the
prior section to obtain the numerical solutions for partial differential equa-
tions (PDEs). Finally, in Section 1.5 we present the numerical solutions to
the PDEs, viz., elliptic, parabolic and hyperbolic differential equations.

1.1 Finite difference approximations

Our goal is to find approximate solutions to differential equations, i.e., to find
a function (or some discrete approximation to this function) which satisfies
a given relationship between its derivatives on some given region of space
and/or time, along with some boundary conditions at the edges of the do-
main. In general this is a difficult problem and only rarely can an analytic
formula be found for the solution. A finite difference method proceeds by
replacing the derivatives in the differential equations by finite difference ap-
proximations. This gives a large algebraic system of equations to be solved in
place of the differential equation, something that is easily solvable on a com-
puter. Before tackling this problem, we first consider the more basic question
of how we can approximate the derivatives of a known function by finite dif-
ference formulas based only on values of the function itself at discrete points.
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Besides providing a basis for the later development of finite difference meth-
ods for solving differential equations, this allows us to investigate several key
concepts such as the order of accuracy of an approximation in the simplest
possible setting.

Let u(x) represent a function of one variable that. unless otherwise stated,
will always be assumed to be smooth, meaning that we can differentiate the
function several times and each derivative is a well-defined bounded function
over an interval containing a particular point of interest . Suppose we want
to approximate u/ () by a finite difference approximation based only on values
of u at a finite number of points near . One obvious choice would be to use

w(x +h) — u(r)
h

D u(%) (1.1)
for some small value of h. This is motivated by the standard definition of
the derivative as the limiting value of this expression as h — 0. Note that
D u(x) is the slope of the line interpolating u at the points  and x + h. The
expression in (1.1) is a one-sided approximation to u’ since u is evaluated
only at values of > &. Another one-sided approximation would be

) = u(r —h) — ”(J_'). (1.2)

Bt h

=~

Each of these formulas gives a first order accurate approximation to u'(x),
meaning that the size of the error is roughly proportional to h itself. Another
possibility is to use the centered approximation

u(+h)—u@—-h) 1
2h S 2

Dou(z) = (Dyu(x) + D_u(z)). (1.3)

This is the slope of the line interpolating u at © — h and ¥ 4 h and is
simply the average of the two one-sided approximations defined above. From
Figure 1.1 it should be clear that we would expect Dou(z) to give a better
approximation than either of the one-sided approximations. In fact this gives
a second order accurate approximation, the error is proportional to h? and

slope D u(Z)

slope D_u(T)

slope u/(T)

slope Dou(T)

i'ill
b o]
- [—

Bih u(z)

Fig. 1.1 Various approximations to u'(z), interpreted as slopes of secant lines



