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Preface/Introduction

Suppose that we have a commutative ring A and an ideal I in A. Then we
have the well-known I-adic completion M of any left A-module M,

MM = lim M/I"M .

n>1

The assignment: M ~» M? is an additive functor, that in general is neither
left nor right exact; the usual completion functor fails to have many useful
properties, that often make computation difficult.

In this book, we introduce a new functor, C'(M), the C-completion of M
with respect to the ideal I. Actually we make this construction in far greater
generality—if A is any not-necessarily-commutative topological ring with iden-
tity such that the topology is given by right ideals and if M is any abstract
left A-module, then we define C(M). C(M) can be defined quickly as being the
zeroth derived functor of the usual completion functor, M ~» M”. For example,
if we choose Py, P» projective left A-modules and an exact sequence

Pr—P,—>M—=0,

then C'(M) = Cok(P) — P3).

In all cases, the functor M ~» C(M) is right exact. However, unlike M”"
C(M) is rarely Hausdorff (not even if the topological ring A is a complete
discrete valuation ring that is not a field). Hence C'(M) can be thought of as
being “a Non-Hausdorff Completion of the abstract left A-module A.”

Although C(M) and the traditional M”" are in general different, one can
recover M” from C(M). E.g., under mild conditions,

C(M)/(divisible elements) ~ M”" .

Thus, M” can be thought of as being a weaker construction than C(M).

In addition, since the functor C' is a right exact functor, it has higher derived
functors. These are the higher C-completions, C;(M),i > 0. (Co(M) = C(M).)
These are used to construct spectral sequences, that are very useful in computing
C(M) and C; (M), ¢ > 0.

If A is a topological ring such that the topology is given by right ideals and
M is an abstract left A-module, then we define the notion of an infinite sum

vii



viii PREFACE/INTRODUCTION

structure on the abstract left A-module M. Basically, if (a;);er are elements in
A™ that converge to zero, and if (m;);e; are any elements of the left A-module
M, then an infinite sum structure tells us how to define

Za,;m,; e M.

icl
A left A-module M, together with an infinite sum structure, is called a C-
complete left A-module. And we define the notion of an infinitely linear func-
tion between two C-complete left A-modules. For example, if M is any ab-
stract left A-module, then both M” and C(M) have natural such structures,
and, therefore, are naturally C-complete left A-modules, and the natural map:
C(M) — M” is infinitely linear. The category of all C-complete left A-modules
and infinitely linear functions turns out to be a very interesting abelian category,
which we shall denote €'4.

It should be noted that, under reasonably mild conditions—e.g., if the topo-
logical ring A is such that the topology is given by denumerably many two-sided
ideals I;,7 > 1, each of which is finitely generated as right ideal, and such that I?
is open, 7 > 1, then the category %4 turns out to be a full exact abelian subcat-
egory of the category .# 4 of all abstract left A-modules—that is, every linear
map of C-complete left A-modules is then automatically infinitely linear. In
all cases, whatever the topological ring A, the “stripping functor”: €4 ~ # 4
that to each C-complete left A-module associates the corresponding abstract
left A-module, is always exact and faithful, and preserves direct products. In
particular, 4 is always an exact abelian subcategory of .# 4.

We now summarize these constructions, and others, in more detail. For
the rest of this Preface, we will refer only to topological rings A such that the
topology is given by right ideals.

In Chapter 2, a C-complete left A-module is defined to be an abstract left
A-module together with an infinite sum structure. For example, if M is an
abstract left A-module, then M” is a C-complete left A-module in an obvious
way. In fact, every C-complete left A-module is isomorphic to the cokernel of
an infinitely linear map: F” — G, where F' and G are free left A-modules.
(Note: The map F* — G need not come from a map-in .#4 : F' — G.) In
Example 3 of Chapter 2, we construct a complete submodule N of (6“)7,
where A = ¢ is any c.d.v.r. that is not a field, such that (//’(“’))A/N is not
Hausdorff. However, of course, it is C-complete, for the infinite sum structure
inherited from (&))",

In Corollary 2.3.10 of Chapter 2, we show that if A is commutative, then
the A-module Hom, (M. N), where M, N € €4 also has a natural structure
of C-complete A-module (it is given by the infinite sum structure inherited
from NM). In Remark 8 of Section 3 of Chapter 2, if the topological ring A is
commutative, if M, N, L € €4 andif f: M x N — L is a function, then we define
what it means for f to be infinitely bilinear, and we use this to define M ®S N,
the C-complete tensor product of M and N. Also, if A is commutative, then we
define

Homg, : €34 X €4~ €a .
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The functors Home, and ®i are adjoint:

C
Home,(M Q) N, L) ~ Homg, (M, Home, (N, L)) .
A

This is an isomorphism of functors from € x €Y x € into the category of sets
(even into the category €a).

Always, € is abelian and is closed under infinite direct products and inverse
limits, and the “stripping functor”: %4 ~» .#4 is exact and preserves arbitrary
direct products and inverse limits. Also, ¥4 has enough projectives.

Infinite direct sums and arbitrary direct limits also always exist in ¥4 but
they are very different from the usual construction in .#Z4: these constructions
are pathological in 4.

Some interesting details: Every finitely presented abstract left A”-module
has a natural structure as C-complete left A-module. And, if M is any ab-
stract left A-module, then C'(M) can be characterized as being the universal
C-complete left A-module into which M maps by a homomorphism of abstract
left A-modules. And, the functor C : .#4 ~~ %4 preserves arbitrary direct
limits.

In Chapter 3, Section 2, we study the divisible part of C-complete left A-
modules. For example, if the topology of A is given by denumerably many open
right ideals, and if M is a C-complete left A-module, then M always has no
non-zero infinitely divisible elements (i.e., there is no non-zero submodule of M
that is divisible). And then also for every abstract left A-module M, C(M) =0
iff M™ = 0 iff M is A-divisible. And then also for every M € %4 we have the
short exact sequence:

0— (div M) =M= M"—=0

in €4, where (div M) denotes the divisible part of M; and if N € .# 4, then we
have the short exact sequence

0 = div (C(N)) = C(N) =+ N =0

in 4. Of course, these hypotheses are very mild, and hold in all serious current
applications to algebraic geometry and commutative algebra. And then,

N" = C(N)/(divisihle elements) ,
so that N is “C'(N) made Hausdorff”, for all abstract left A-modules N.
Note: If the topology of A is the right t-adic for some element ¢t € A, such

that, e.g., either t is not a left divisor of zero, or A is right Noetherian, then

Ker(M — C(M)) = {infinitely ¢ — divisible elements of M} .
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And

M /(div M) = M",
M /(infinitely divisible part of M) < C'(M),
C(M)

div (M) '
(inf.div.M)

In Chapter 4, we study the higher C-completions, C;(M),i > 0 —these are the
left derived functors of the functor C' from .#4 into €4—or, equivalently, of the
usual A-adic completion functor, M ~» M”", from .4 4 into €4.

If B, is any non-negatively indexed chain complex of abstract left A-modules,
then we have the two spectral sequences in the category €4 starting with

M" =

TEL .= Cy(By)

and

IIEI%)Q — C[)(Hq(B*)) )

both abutting at the same sequence K,,,n >0, in ¥4 (but with different filtra-
tions). From these, we deduce the spectral sequence of the C-completion: B, as
above, if also

Ci(By)=0,i>1,¢>0, (%)

then we have a first quadrant homological spectral sequence:

Ep 4= Cp(Hy(B.)) = Hu(C(B1)), n2 0.
Note: Condition () holds if the topology of A is given by denumerably many
right ideals, and if B; is left flat as A-module, all ¢ > 0.

The above spectral sequence is very important in many computations in-
volving cohomology of completions and p-adic cohomology of algebraic varieties
and schemes. For example, the short exact sequence (1.8) of [PPWC], and of
[COC], Chapter 2, is a very special case of this spectral sequence.

A corollary of the spectral sequence: If the topology of A is given by denu-
merably many right ideals Iy D Is D I3 D -+, then we have the short exact
sequence

0— (lm Tor{ (A/I;, M) ) S CM)> M0,
Jj21

for every abstract right A-module M. And, if the I; are two-sided ideals that

are finitely generated as right ideals, and if IJ2 is open for all 7 > 1 (i.e., if for

all 7 > 1, 112 D Iy for some k > j), then for every C-complete left A-module M,

we have that

div(M) 51_1 Tor{ (A/1;, M)

7>0

as C-complete left A-modules.
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If the topology of A is given by denumerably right ideals, and if M is a flat
left A-module, then

C(M)=M" and C;(M) =0, > 1.

As a special case:
If A is a commutative ring, and ¢t is an element that is not a divisor of zero,
and if the topology of A is the t-adic topology, then

A
div(C(M)) = @ (p[‘(‘.(’,ib‘(‘ t'-torsion in %)
i>1

where “{precise t'-torsion in an A-module N}” means “Ker (t*: N — N)”, and
where, if M € .# 4, then “M” /M is shorthand for “(Cok(M — M"))”. And,
in this case Ker(M — C(M)) = {infinitely t-divisible elements in M}, for all
abstract A-modules M.

In Chapter 5, we study direct sums and direct limits in €4. As we have
noted above, direct sum is usually very different from the direct sum of abstract
left A-modules and is not exact. Because of its unusual behavior, we use the

symbol
/ M,
i€l

to denote the direct sum of objects M; in %4,¢ € I. The notation
D
i€l

will mean the direct sum in .#4—i.e., as abstract left A-modules, ignoring the
infinite sum structures. Under mild conditions, we have that

f M;=C (@ Mi) in €y,
i€l

el

whenever M; € €4, alli € I. And C (li—”)lieD ]\L-) is the direct limit in %4 of
any direct system (M;, ;)i jep of objects and maps in €4 where, as usual
hﬂieo M; denotes the direct limit in .#4. ignoring the C-complete left A-

module structures of the M;, i € 1.
The functor C' from .# 4 into €4 always preserves arbitrary sums and direct
limits; in particular, we have that

C (@ M,-) - C(M;) ,
el

el

for all M € .# 4 and all sets 1.
The natural map from the direct sum into the direct product in @4:

'[ , M; — H M,

iel
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is almost never injective. In fact, under very mild conditions,

div (/ ]\L-) = Ker / M; — H]\/L- ,
iel i€l

iel

and this is often non-zero. For example, if A = € is a c.d.v.r. not a field with
uniformizing parameter ¢, then

div ( ﬁ/ti/f) = Ker / o/ie —JJo/wo)
izl i>1

i>1

and is non-zero. And, therefore, the C-complete &-module

/,21 ojie=c|@Po/to)

i>1

is a C-complete &-module that is not complete.

In §5.6, since the direct sum fie[ M; in the category €4 is usually not exact,
but is always right exact, and since ¢4 always has enough projectives, we define
and study the higher direct sums

n
(Mi)ier ~ M;, n>0,
iel
which are by definition the higher left derived functors of f1 ¢7- For example,
we always have the first quadrant homological spectral sequence in the category

@a,
i p
E = /GI Co(M;) = Ch (@ M; (%)

iel

where M; € €4, all 2z € 1.
And, under mild conditions on A, the natural infinitely linear function:

P
C, (@ Mi> —+ / M;
icl i€l

is an isomorphism, all p > 0, whenever M; € %4, all i € I. And, under the
same mild conditions, the spectral sequence (*) simplifies to

B, =0y (@ C,,(M.,-,)) =5 {0, (@ M,,-,) :

iel el

Sometimes, however, the infinite direct sum f«'el M, in 64 is exact: For example,
if A is a right t-adic ring (meaning that there is an element ¢ € A such that
the topology of A has an open neighborhood base at zero consisting of the right



PREFACE/INTRODUCTION xiii

ideals t'A,i > 0), and such that the ¢-torsion is bounded below (meaning that
there is an integer n > 1 such that t™a = 0 in A implies that t"a = 0, all a € A,
all m > 1), then, for every set I, the I-fold direct sum

/ I R
el
is exact.

In §5.7, we study some of the consequences of the fact that fiEl is usually
not exact.

An abelian category «7 obeys the Filenberg Moore Awxiom (P1) iff denu-
merable direct products exist and the functor “denumerable direct product™:
&Y~ o s exact. &/ obeys the Filenberg Moore Axziom (P2) iff denumerable
direct products exist, and if also whenever

"'—)‘4i+1—)A,—>~'~—)A1

is an inverse system in which all the maps are epimorphisms, then the induced
map:

kl.l_ll A,‘ — Al
121

is an epimorphism. & obeys the E-M Aziom (S1) (resp. (52)) iff the dual
category &7 obeys the (P1) (resp. (P2)). We show the well-known facts that
(P2) = (P1), and that (S2) = (S1): and that if &/ has enough injectives, and
if denumerable direct sums exist, and if denumerable direct limit is exact, then
& obeys (52), and therefore also (S1).

Now, if A is any ring, and t is an element in the center of A that is not
nilpotent, and if we give A the t-adic topology, then the abelian category 44
does not obey the EM Axiom (52).

In fact, if A is a commutative ring and ¢ € A, then ¢ is not nilpotent iff %4
does not obey EM (.52).

And, we also show that. given a ring A, and an clement ¢ in the center of
A that is not nilpotent, and such that the ¢-torsion is bounded below. then if
we give A the t-adie topology, we have that the abelian category @4 obeys the
Eilenberg Moore Axiom (S1) but not (52). Since €4 does not obey (52). it
follows that it also does not have enough injectives. And, in this case, @4 is an
exact full abelian subcategory of the category of left A-modules .7 4.

As a special case, if @ is a complete discrete valuationg ring not a field, then
the full subcategory @y of the category of @-modules obeys (S1) but not (52).
and also does not have enough injectives (but does have enough projectives).
Such examples are hard to come by, and %, is a pretty natural such example.
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