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Preface

The ability to achieve any goals in our society is largely dependent upon, and
limited by, the state-of-the-art tools available. While the speed and ease of
the construction of large objects, such as buildings, are rapidly enhanced by
the creation of various heavy machines, established fundamental chemical
reactions, in combination with our creative and intelligent designing skills,
ultimately determine the synthesis of chemical products.

The development of novel chemical reactivities and reaction conditions
that can improve resource efficiency, energy efficiency, product selectivity,
operational simplicity, as well as environmental health and safety, repre-
sents both an ideology and an aspiration for generations of synthetic
chemists, more so than ever at this time. Ever since the synthesis of urea by
Friedrich Wohler in 1828, organic chemistry has become increasingly im-
portant in modern society. The invention of organic reactions over the past
two centuries has allowed us to create synthetic organic compounds and
materials that have now touched essentially every corner of our life: from
cosmetics to fashion, from pharmaceuticals to agrochemicals, from trans-
portation to the interior of skyscrapers, and from electronics to genetic
modification. However, the archetypical requirements of standard classical
chemical transformations are the functional groups, which provide the
platform for chemical conversions that have led to the synthesis of millions
of both naturally existing and non-naturally existing molecules in just less
than two centuries, only a blinking moment in human history. In spite of the
great successes, there are still various shortcomings: the pre-functionalized
starting materials need to be synthesized in separate steps, and the amount
of waste associated with solvent usage, purification and isolation man-
euvers, as well as the required manpower to perform a synthesis increases
exponentially with the number of synthetic steps. With recent concerns re-
garding the adverse effects of chemical production processes, as well as the
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viii Preface

emphasis on green chemistry and chemical sustainability, various frontiers
of synthetic chemistry have been explored. Among them, the concept of the
cross-dehydrogenative-coupling (CDC) reaction was formulated in 2003. The
direct generation of a C-C bond from two different C-H bonds constitutes an
ideal that has game-changing potential in synthetic design. The subject has
become a very rapidly expanding field. This edited book will cover some of
the key developments in this area.

Chao-Jun Li
Montreal, Canada
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CHAPTER 1

The Evolution of the Concept
of Cross-Dehydrogenative-
Coupling Reactions

SIMON A. GIRARD, THOMAS KNAUBER AND CHAO-JUN LI*

Department of Chemistry and FQRNT Centre for Green Chemistry and
Catalysis (CCVC) McGill University, 801 Sherbrooke Street West, Montreal,
Quebec, H3A 0B8, Canada

*Email: ¢j.li@mcgill.ca

1.1 Introduction

Among the countless reactions developed throughout the history of organic
chemistry, carbon-carbon bond formation reactions are very special, as such
reactions create the framework for organic molecules to build on and for
functional groups to be attached to. Thus, the development of methods for
forming C-C bonds plays a central role in the design and synthesis of or-
ganic matter: molecules and materials.! Historically, nucleophilic additions,
substitutions, and Friedel-Crafts type reactions formed the pillars of
methods to connect two simpler molecules via the formation of a C-C bond
in acyclic structures.” The development of pericyclic reactions® laid the
foundation for synthesizing cyclic structures. Over the past four decades,
transition metal catalyses via cross-coupling and metathesis have overcome
some limitations of the classical reactions, e.g., nucleophilic substitutions
involving sp® carbon centers, and have greatly increased the efficiency of C-C
bond formations, especially those involving arenes and alkenes, in modern
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2 Chapter 1

organic chemistry.” Their importance is attested by the awarding of Nobel
Prizes in both 2005 and 2010.°

However, in spite of the great success of both classical C-C bond for-
mation methods and the modern extraordinary achievements of transition
metal catalysis, state-of-the-art C-C bond formation reactions must use pre-
functionalized starting materials, which require extra steps (sometimes
multiple steps) to synthesize. In many cases, during the core C-C bond
formation processes, the pre-formed functional groups are simultaneously
‘lost’. The necessity of these repetitive pre-functionalization and defunctio-
nalization steps plus the associated isolations and purifications, ultimately
diminishes the overall material efficiency in the synthesis of complex or-
ganic molecules and increases chemical waste. The reduction in efficiency is
aggravated with an increase in the complexity of molecules, as exemplified
by the E-factor of Sheldon.® To reduce the number of steps involved and
increase the efficiency in synthetic chemistry, we must explore new frontiers
of chemical reactions, in which various chemical bonds in widely available
natural resources, petroleum, natural gas, biomass, N,, CO,, O,, water, and
others can be selectively transformed directly without affecting other bonds
and without the need for excessive pre-activations. As part of this effort, the
transition metal catalyzed C-H bond activation and subsequent C-C bond
formations have, thus, attracted much interest in recent years.” Outstanding
achievements have been made in this area and many complex compounds
can be made much more rapidly. However, these reactions still require at
least one functionalized partner in order to generate the desired C-C bond
formation products.

Historically, the copper-mediated oxidative homodimerization of alkynes
(the Eglinton reaction), an first reported over a century ago, represents the
earliest success of directly generating a C-C bond from two C-H bonds.? The
reaction requires a stoichiometric quantity of Cu(OAc), as both mediator
and oxidant. The Glaser-Hay coupling modified such oxidative homo-
dimerization of alkynes by using a catalytic Cu(I) catalyst with oxygen as the
terminal oxidant.® On the other hand, the oxidative homodimerization of
electron-rich arenes has also become highly successful in generating arene
dimers and polymers for a wide range of applications: from fine chemicals
and pharmaceuticals to electronic materials.'® Both types of reaction, how-
ever, are limited to homodimerizations and are beyond the present book.

In synthetic chemistry, what is very challenging and highly desirable is the
selective formation of two different C-H bonds from two completely differ-
ent compounds (or two chemically different sites within a molecule). As C-H
bonds are generally relatively inert, compared to all other bonds in organic
molecules, such cross-oxidative couplings involving only C-H bonds in the
presence of, and without affecting other more reactive bonds, would be
unthinkable within classical chemical knowledge.

Prior to the concept of cross-dehydrogenative-coupling (CDC), Moritani
and Fujiwara developed the oxidative formation of Heck-type reaction
products directly from arenes and alkenes, instead of aryl halides and



