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1. Logic : Form and Content

Logic deals with what follows from what. It is the systematic study of
the fundamental principles that underlie correct, “necessary” pieces
of reasoning (or true sequents, as they are called later in the book).
as these occur in proofs, arguments, inferences, and deductions. The
correctness of a piece of reasoning, it is found. does not depend on
what the reasoning is about (we can see that the conclusion al/
epiphorins are turpy follows from the premisses all epiphorins are
febrids and all febrids are turpy, without understanding all the
words) so much as on how the reasoning is done: on the pattern of
relationships between the various constituent ideas rather than on
the actual ideas themselves.

To get at the relevant aspects of such reasoning, logic must
abstract its form from its content. We must disregard the epiphorins
and the febrids and the turpiness and see the general truth that all
A are C follows from all A are B and all B are C quite independently
of the particular nature of the 4, B and C that happen to occupy
those places in the reasoning pattern.

If the content is irrelevant to the correctness of the inference of a
conclusion from given premisses. it cannot matter whether the con-
clusion is true or false, nor whether the premisses are. For example.
from the (false) premiss that all prime numbers are odd and the (true)
premiss that two is a prime number the (false) conclusion that two is
odd follows quite correctly. The form of the inference is: to infer
Pis B fromall A are B and P is A; and this inference form is valid.

What does it mean to say that an inference — a piece of reasoning
in which a sentence is inferred as conclusion from one or more
sentences as premisses — is correct? What is being claimed when it is
stated that the conclusion follows from the premisses?

It is not, as we have just seen, that the inference is correct because
its conclusion is true: correct inferences can have false conclusions.
Moreover, incorrect inferences can have true conclusions, as for
example when we infer that five is prime from five is odd and some
primes are odd: both premisses are true; the conclusion is true; the
inference is nevertheless incorrect. It is incorrect by virtue of its



2 . Logic: Form and Content

form: to infer P is B from P is A and some A are B is an invalid form
of inference.

So we have an answer to the question: what makes an inference
correct? The answer is: an inference is correct if its form is valid;
incorrect if its form is invalid.

This naturally raises a further question: what does it mean to say
that a form of inference is valid or invalid? Are not these just alterna-
tive words meaning correct or incorrect? It must be confessed that
they are. The point is that we must ask (essentially) the same question
about inference forms, rather than about inferences themselves.
Correctness, or validity, is a property of inference forms rather than
of individual inferences. Our answer above begs the question: it says
that an inference is correct if its form is correct, and that it is in-
correct if its form is incorrect!

However, we now have the question properly posed. Its answer is:
an inference form is correct if there is no inference of that form
whose premisses are true and whose conclusion is false.

Some people use the word counterexample as a convenient short
means of expressing this: an inference form is correct if there is no
counterexample to it. A counterexample to an inference form is just
an inference, having that form, whose premisses are true but whose
conclusion is false. Thus when we said that the inference form “to
infer P is B from P is A and some A are B” is not correct, we meant
that counterexamples to it exist. For instance, here is a counter-
example to it: nine is odd, and some primes are odd, therefore nine is
prime. Both premisses are true but the conclusion is false; and the
form is that of the principle in question, which therefore has a
counterexample, and so is not correct.

Notice that the concept of a counterexample introduces the con-
cepts true and false. These are semantic ideas, having to do not only
with the meanings of sentences and their constituent words and
phrases, but also with the facts. On the other hand the form of a
sentence and of its constituent sub-units is a syntactic idea, removed
from any consideration of what the facts are or what the “irrelevant”
words mean.

Although we are stressing the idea of abstracting away the “irrel-
evant” meanings, we must not give the impression that all meaning
whatsoever is lost when we strip away content and leave behind only
form. The “logical words™ survive: all, some, is (are), not, and, or,
if ... then, and so on. We represent and display logical forms as
skeletons or schemata made up of various combinations of these
logical words, linked together in the patterns found in working dis-
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course, but with the “content words” removéd and replaced by
schematic letters or other symbols. The resulting “formautas” arg
simply notational devices for revealing, represemting, portraying,
exhibiting (whatever the term should be) the losicdl fpem of the
sentences we started with. The transaction involved is Bestgr described!
as separating out the logical meaning from the nonlogical, andde”
picting the former with the help of special notations.

The exploitation of special notations in studying logical form has
reached very high levels of perfection over the past century. The
logician Quine says at the beginning of his well-known textbook
Methods of Logic: “Logic is an old subject, and since 1879 it has
been a great one.” What happened in 1879? In that year, the German
mathematician Gottlob Frege published a short booklet in which he
set up a systematic notation for representing logical form. His system
was essentially an abstract artificial language, designed with great
care and deep insight, in which one could formulate propositions and
proofs, with proper emphasis on their form.

Frege called his artificial language the Begriffsschrift — a German
word he himself coined, to mean something like the thought notation,
or the concept language. In more recent times it has come to be called
the predicate calculus.

The great central core of modern logic — its mainstream — is the
collection of ideas and facts which make up the system of the pre-
dicate calculus and its fundamental properties. The predicate calculus
system is at one and the same time a notation intended for use in
formulating and checking pieces of reasoning, and a repository or
focus of all of the principal ideas and discoveries — some of them as
deep and beautiful as any in the whole of mathematics — that consti-
tute logic as a scientific theory. The chief purpose — or at any rate
the chief satisfaction — of logic is the understanding it brings of the
reasoning process as such — of the structure of “pure thought”, as
Frege put it in the title of his booklet: “BEGRIFFSSCHRIFT, a
formalized language of pure thought, modelled upon that of arith-
metic.”

The “formalized language of arithmetic” upon which Frege
modelled his predicate calculus is the one we all learn as children for
representing numbers, and operations upon them, in both concrete
and abstract ways. We learn the concrete algorithms of “counting”,
“addition”, ““multiplication”, and so on. which help us to write such
truths as

3 x (17 + 4) =63 (1)
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and we acquire “algebraic™ abstract general principles such as
axb+c)=@xb)+(@xc) ()

which allow us to represent the form of particular facts like (1). The
great power of the system of symbolic representation, manipulation
and computation provided by this familiar “formalized language” is
available to all people with a standard elementary education. It is the
basis for the more extensive, sophisticated, and less widely-known
symbolic system of mathematical notation that is the common ex-
pressive medium and analytic instrument of the exact sciences.

Frege's predicate calculus, then, is “‘modelled upon™ the notation
that is designed to represent numerical form and structure. It is only
modelled upon it: there is an analogy, and a deep one, but that is all.
The predicate calculus is designed to represent logical form; to per-
mit the construction and application of logical algorithms and aha-
lytical procedures. The way in which this representation is done, and
what it is that is thereby represented, must be understood indepen-
dently of the way that the numerical and algebraic symbolic systems
work.

Yet there are certain concepts — those, one wants to say, that most
nearly correspond to the “forms of pure thought™ that Frege wanted
to reveal and explain — that are not entirely unfamiliar to the student
of the classic “arithmetical” symbolic formalisms. First among these
notions is that of a _function.

One is accustomed to considering, in numerical reasoning, such
functions as are “defined” by or “‘given” by, e.g.

Ix2+2x+4 3)

namely, by an expression that determines, when some thing (here, a
number) x is given as “argument”, another thing (here, again a
number) as “value” or result. Thus the “expression” (3) defines a
function F, which “yields” 9 when *‘applied to” the number 1, 20
when applied to 2,

F(1)=9
F(2)=20

and so on; since 3-(1)>?+2-(1)+4=9, and 3-(2)?+2-(2) +
4 = 20.

The function F defined by (3) above is applied to an argument a by
the simple process of letting “x” denote a in the expression 3x? +
2x + 4, and then “computing out” the resulting expression. This
process is known as evaluating the expression 3x? + 2x + 4 at a.
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We can in this fashion define functions that apply to more than
one argument, e.g. the function G defined by

3x2+2xy + 42 + 5 4)

which applies to pairs of numbers (a, b)) and which we compute in
the same way, by evaluating its “defining expression” 3x? + 2xy +
4y? + 5 after letting x denote a and y denote b. Thus G(1, 2) is

3-(1D)P+2-(1)-(2)+4-(2*+5=28

There is no reason why we cannot consider functions that yield
things other than numbers when applied to numbers. For example,
we can consider the “entities” truth and falsehood (known as the two
truthvalues) as being yielded when we evaluate such expressions as

X2+ 12x+42>20 (5)

If x denotes 1 then (5) is true, i.e. “evaluates to truth”; while if x is —3
then (5) is false, i.e. “evaluates to falsehood”. So we can look upon
the function defined by (5) as one that yields truthvalues when applied
to numbers. Similarly,

3x2+ 2xy + 4y* + 5 < 21 (6)

defines a function of two arguments which likewise yields truthvalues
as results. Functions that yield truthvalues (and only truthvalues) as
their results are called relations, or predicates.

The arguments of functions need not be numbers, either. For
example, we can consider the expression

x is the sister of y (7

as defining a function of two arguments, which are human beings,
and that yields truth when applied to a pair (a, b) of humans such
that a is b’s sister, and falsehood when applied to other pairs of
human beings. Indeed, the notion of function is entirely general, and
neutral, as far as the nature of its arguments and results is concerned.
We could, for instance, consider the function defined by

the father of x (8)

which, when applied to a human being a, yields the human being
who is a’s father; and we can “nest” such functions just as we do
with numerical ones, e.g.

x is the sister of (the father of ) )

Frege saw that the general, neutral concept of a function must be
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made the principal one in his proposed system for symbolically
representing the forms of “pure thought”. The way in which a func-
tion can be defined, or represented, by giving an expression (as in the
above examples) for its result as a computable or constructible com-
bination of its arguments, is known as abstraction; and Frege’s great
insight was to see that the activity of “pure thought” he wanted
to represent consisted of acts of abstraction of functions from ex-
pressions, interwoven with acts of application of functions to argu-
ments, formulated as acts of evaluation of expressions. The interplay
between abstraction, application and evaluation is the whole story
of the thought that Frege wanted to analyse, explain, and represent.

The distinction (within the general framework of ‘“‘thought as
abstraction, application and evaluation” outlined above) between
“pure” thought and the rest, is straightforward enough. Pure thought
is not contrasted with impure thought — at least not by Frege, and
not in this book — but with “applied thought”, in much the same
spirit as in the distinction between pure and applied mathematics,
or pure and applied science. Certain functions, and certain kinds of
result (i.e. the truthvalues) seem to occur in all forms of thought,
whatever the particular subject matter. So these, along with the bare
structure supplied by abstraction, application and evaluation as
formative principles, are taken as the primitive ingredients of the
“thought-writing” notation.

These functions and entities are the logical ones: truth, falsehood,
negation, conjunction, disjunction, universal and existential general-
ization, and exemplification. We shall discuss these, and the notations
for their representation, in the following chapter.

“Non-logical” functions and entities co-exist and interact with
these logical ones in a completely integrated way: but for each special
choice of subject-matter, and of a body of notions with which to
organize that subject-matter conceptually, there is a particular
“applied” system, or calculus. This “‘applied calculus™ contains just
the combination of general logical apparatus with the particular
special notations deemed appropriate to the subject-matter of the
applied calculus and to its particular special way of analysing that
subject-matter.

Every *“applied” calculus is an example of a particular way of
conceptually organizing one’s thoughts about some given “universe”,
or collection of “individuals”, as subject-matter. If we then study
how reasoning takes place within the framework of such an applied
calculus, we are led to the underlying “pure” calculus, which directly
depicts the “forms of pure thought™ used to organize the subject-



Logic: Form and Content 7

matter, without actually introducing that subject-matter.

The first half of this book attempts to clarify the relationship
between “pure” and “applied” forms of thought as embodied in the
various pure and applied calculi of the symbolic system collectively
known as “the” predicate calculus.

Once this formalism is understood. the reader can then easily
entertain, and follow the development of, a proposition that has
entranced students of logic for centuries: that deductive reasoning
can be mechanized — literally, performed by a machine — just as
many of the routine tasks of numerical computation can be and have
been. It was not Frege’s main motivation to help make-the mechaniz-
ation of deductive reasoning a practical possibility. He was very
much aware, however, of the attempts of earlier thinkers such as
Hobbes and Leibniz to argue that this could and must be done, and
he well knew that his own work was an indispensable step.

The second half of this book traces the development of the theory
of the predicate calculus as it is steered deliberately in the direction
of this goal. The discussion culminates in a complete, detailed
account of a working computer program for showing “what follows
from what”. The present author’s hope is that the ideas under-
lying this computer program will be of interest even to those who
have no prior experience of computers or of programming — we
explain the necessary rudiments of the programming system used
(Li1sP) so as to give the account a self-contained character.

Reasoning is, after all, a kind of computation: just as it has always
been obvious that computation (as normally understood) is a kind of
reasoning. The impressive role played by automatic computation in
modern science and technology is made possible, ultimately, by the
great notations of traditional mathematical analysis together with
their supporting conceptual frameworks. The mechanization of “pure
thought” itself — deductive reasoning as such — is, now that we have
been given a notation for it, no longer just the dream of a Leibniz;
it is now a reality. In the present author’s opinion, mechanizing
deductive reasoning is one of the most exciting and potentially fruit-
ful areas of research that there has ever been.

Let us then begin by describing the elements of the predicate
calculus system.



2. Formulas : Syntax and Intuitive Semantics

The predicate calculus has a simple, systematic basic syntax, whose
principal feature is the characterization of the class of expressions
that are its_formulas. We shall denote this class by F.

The formulas are split into two subclasses: the class T of terms,
and the class S of sentences. The general idea of the calculus is,
roughly, that there is a set of things, which are “what the formulas
are about”. These things are called the individuals, and the set con-
taining all of them is called the universe of individuals, or the universe,
for short. The intended meaning of the terms is that they stand for
(“denote”) individuals. The sentences, on the other hand, are intended
to express propositions about the individuals, which are either true
or false. In the stylized semantics of the predicate calculus there is a
special way of saying that a sentence expresses a frue proposition;
namely, one says that it stands for, or “denotes”, truth. Similarly, one
says of a sentence which expresses a false proposition that it stands
for, or denotes, falsehood. Thus there is a set of two entities, called
the truthvalues. These truthvalues, namely truth and falsehood, or t
and f for short, are the counterparts, for the sentences, of the indi-
viduals. Sentences denote truthvalues; terms denote individuals.

That brief glimpse of the semantics of terms and sentences is
offered as an aid to understanding the plan behind their syntax. We
shall later on discuss the semantics much more fully.

So far, then, we have broken down the formulas into two classes,
the terms and the sentences:

formulas F=T+S8S

terms sentences

The class T of terms is divided into four classes: these are the indi-
viduals, the variables, the constructions, and the exemplifications. Let
us consider these in order. First, the individuals.

We must emphasize the fact that individuals (i.e. elements of the
universe of individuals) are not necessarily “symbolic” entities as
usually understood by that notion: they are, rather, the things which
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the symbolic entities represent. However, the usual notion of “sym-
bol” is quite vague, and it seems to mean nothing more than “what
formulas are ultimately made out of”. In order to be reasonably clear
here about our basic syntax we are taking an abstract attitude
towards the formulas, by characterizing them as “constructs” of
various kinds, without entering into an unnecessary commitment as
to the nature of the basic building-blocks out of which the constructs
are put together.

In this spirit we suppose that there are four sets: the universe U;
the set V of variables; the set C of constructions and the set X of
exemplifications. The universe U is the set of individuals. We assume
nothing more about U than that it is a non-empty set: it may be
finite, or infinite; and in the latter case its cardinal number may be
arbitrarily large. (In this book, however, we shall not take advantage
of this; we shall in fact be primarily interested in the case where U
is finite or at most countably infinite.)

Next, the set V of variables. We assume that V is a countably
infinite set, and that indeed there is some given enumeration of it
(without repetitions) by reference to which we can unambiguously
refer to the jth individual variable, where j is any positive integer.

formulas F=T+S
terms/ sentences T=U+V+C+X

individuals variables constructions exemplifications

We have so far, then, a countable infinity of variables, and an
unknown (but non-zero) number of individuals, among our terms.
In writing formulas we shall follow accepted usage and represent
variables by letters x, y, z, ..., a, b, ¢, etc., affixing numerical sub-
scripts, or further letters, as in x,, a,, ab, etc., as is convenient. We
do not insist on any standard choice of written representation.

The third kind of term, the constructions, comprise the set C. Each
consists of an operator and an operand. The operator of a con-
struction is a symbol, called a constructor (or, sometimes, a_function
symbol), which is taken from a countably infinite set of such symbols
about which we shall say more in a moment. The operand of a con-
struction is a finite sequence of terms. This finite sequence may be
empty (in which case we say it is the empty operand) or it may con-
tain one or more components. These are called the immediate con-
stituents of the construction.

With each constructor there is associated a non-negative integer,



10 Formulas: Syntax and Intuitive Semantics

called the arity of the constructor. This number must be the same as
the number of components in the operand (i.e. as the length of that
operand, considered as a finite sequence).

The set C, of constructors of arity k, k >0, is assumed to be
equipped with some given enumera.ion, without repetitions, with
respect to which we can unambiguously refer to the jth individual
operator of arity k, for all positive integers j. We thus suppose that
the constructors of arity k, kK > 0, are given as a countably infinite set
C,; so that we have an infinite set of constructors

C0+C|+...
:ZC/

J
(Here, we are representing the union of sets by symbols for addition,
as is usual in discussions of formal syntax when the sets are disjoint,
i.e. have no common members.)

Now if we have a set 4, we denote the set of finite sequences of
length k, k > 0, each component of which is a member of 4, by A*.
In particular 4° denotes the set whose only member is the empty
sequence ()

A° = {0}

while 4! denotes the set of unit sequences of members of 4, i.e., if A
is {a,. a,, ...} then

Al = {(al)’ (GZ)Q-“* )

After these two, the rest are easy, We have

AR = {(al»al)9 (als az)~ (abal)7 (aZs aZ)a--- ,

and so on.
Now the “Cartesian” product (4 x B) of two sets is the set of all
sequences of length 2 (“pairs”)

(a, b)

whose first component a is in 4 and whose second component b is in
B. Note that A% is then the same set as (4 x A4).

We have said that a construction is a pair: the operator and the
operand of the construction. We can now be more specific. The
operator is always a constructor of arity k > 0, and, for that k, the
operand is always an element of the set 7*. That is, the operand is a
sequence of length k whose components are terms.

We can express this definition compactly by the “syntax equation”
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C=(CoxT)+(C,xTH+...+(C, xT" + ...

or, writing the “infinite sum” more neatly
o}
C=3X(C,xT"
k=0

For the purpose of writing down constructions systematically we
can conveniently represent them as parenthesized lists, e.g.

(fab)
(g(h a)(k)(fa b)(h(h(h a))))

In any such list, its initial component is its operator, and its remain-
ing components, if any, are its immediate constituents and thus com-
prise its operand. Thus in the above we are supposing that a and b
are variables, that f'is an individual operator of arity 2, k is an indi-
vidual operator of arity O. 4 is an individual operator of arity I, and
g is an individual operator of arity 4.

Since the immediate constituents of a construction may (some or
all of them) be themselves constructions, we can expect in general to
meet with terms that have a nested structure. This nesting can be
arbitrarily deep, but it is always finite. (It is, intuitively, the maximum
number of nested pairs of parentheses in the written representation
of the term.) The nesting depth. or depth, of a term may be more
formally defined by the recursive rule:

(a) - the depth of a variable, or of an individual, is O

(b) the depth of a construction is 1 greater than the maximum of

the depths of its immediate constituents;

provided that we interpret the second clause to mean, in the case of
a construction with a O-ary operator (and hence no immediate con-
stituents), that the depth of the term is then 1. Thus the depth of a
and b is O; that of (fa b) is 1; that of (h a) and (k) is also 1; while that
of (gth a)(k)(fa b)(h(h(h a)))) is 4.

We think of constructions as examples of applicative expressions,
so called because of the way in which they come to denote the entities
they do denote. The general idea is that an applicative expression
7 with operator w and operand o stands for, or denotes, the entity
that results from applying a certain function @ to a certain finite
sequence A of entities. The function € is the one that the symbol w
denotes, while the finite sequence A is the one whose components are
the entities denoted, in order, by the expressions that are the com-
ponents of .



