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Preface

This volume is a collection of summaries from the lectures of the
Fourth Gene Golub SIAM Summer School on “Matrix Functions and
Matrix Equations” held at Fudan University, Shanghai, China from July
22 to August 2, 2013. The School was in conjunction with the 3rd
International Summer School on Numerical Linear Algebra and the 9th
Shanghai Summer School on Analysis and Numerics in Modern Sciences.
There were 45 students from 14 countries attended the School. An extra
week of activities from August 5 to August 9 was organized for interested
students.

Matrix functions and matrix equations are widely used in science,
engineering and the social sciences, due to the succinct and insightful
way in which they allow problems to be formulated and solutions to be
expressed. Applications range from exponential integrators for the so-
lution of partial differential equations to model reduction of dynamical
systems. The School introduces students to underlying theory, algo-
rithms and applications of matrix functions and matrix equations, and
relevant linear solvers and eigenvalue computations. The summer school
was composed of three courses:

1. Functions of matrices and exponential integrators by Nicholas High-
am, The University of Manchester, United Kingdom and Marlis
Hochbruck, Karlsruhe Institute of Technology, Germany.

2. Matrix equations and model reduction by Peter Benner, Max Planck
Institute for Dynamics of Complex Technical Systems, Magdeburg,
Germany.

3. High performance linear solvers and eigenvalue computations by Ren-
Cang Li, University of Texas at Arlington, United States and Xiaoye
Sherry Li, Lawrence Berkeley National Laboratory, United States.

There are five chapters in this volume. Chapter 1, by Nicholas
Higham and Lijing Lin, is on matrix functions: a short course. Chapter
2, by Marlis Hochbruck, is on a short course on exponential integrators.
Chapter 3, by Peter Benner, Tobias Breiten and Lihong Feng, is on ma-
trix equations and model reduction. Chapter 4, by Ren-Cang Li, is on
Rayleigh quotient based optimization methods for eigenvalue problems.
Chapter 5, by Xiaoye Li, is on factorization based sparse solvers and
preconditioners.



vi Preface

The summer school is hosted by School of Mathematical Sciences,
Fudan University. The local organizers include Professors Tatsien Li,
Jin Cheng, Weiguo Gao and Yangfeng Su of Fudan University, Profes-
sor Pingwen Zhang of Peking University and Professor Zhaojun Bai of
University of California, Davis.

The School received the generous sponsorship from SIAM, US Na-
tional Science Foundation, Chinese-French Institute for Applied Mathe-
matics (ISFMA), Shanghai Center for Mathematical Sciences, National
Science Foundation of China (NSFC), and NSFC 111 project. In addi-
tion, many units of Fudan University including Graduate School, DOE
Key Laboratory of Nonlinear Mathematical Models and Methods, Key
Laboratory of Shanghai Modern Applied Mathematics also provided fi-
nancial and logistical supports. The Numerical Algorithm Group (NAG)
provided the free access to numerical computing software for all partici-
pants.

We would like to express our gratitude to all authors for their con-
tributions to this volume. Finally, the editors wish to thank Mr. Tianfu
Zhao for the professional assistant on the publication of this volume.

October 2014

Zhaojun Bai
Weiguo Gao
Yangfeng Su



vii

Contents

Nicholas J. Higham, Lijing Lin
Matrix Functions: A Short Course ..........cooiiiiiiiinannne... 1

Marlis Hochbruck
A Short Course on Exponential Integrators ....................... 28

Peter Benner, Tobias Breiten, Lihong Feng

Matrix Equations and Model Reduction .......................... 50
Ren-Cang Li

Rayleigh Quotient Based Optimization Methods for

Eigenvalue Problems .......... ..o 76

Xiaoye Sherry Li

Factorization-Based Sparse Solvers and Preconditioners .......... 109






Matrix Functions: A Short Course

Nicholas J. Higham* Lijing Lin'

1 Introduction

A summary is given of a course on functions of matrices delivered by
the first author (lecturer) and second author (teaching assistant) at the
Gene Golub STAM Summer School 2013 at Fudan University, Shanghai,
China, July 22-26 2013 [34]. This article covers some essential features
of the theory and computation of matrix functions. In the spirit of course
notes the article is not a comprehensive survey and does not cite all the
relevant literature. General references for further information are the
book on matrix functions by Higham [31] and the survey by Higham
and Al-Mohy [35] of computational methods for matrix functions.

2 History

Matrix functions are as old as matrix algebra itself. The term “matrix”
was coined in 1850 [58] by James Joseph Sylvester, FRS (1814-1897),
while the study of matrix algebra was initiated by Arthur Cayley, FRS
(1821-1895) in his A Memoir on the Theory of Matrices (1858) [11]. In
that first paper, Cayley considered matrix square roots.

Notable landmarks in the history of matrix functions include:

e Laguerre (1867) [45] and Peano (1888) [53] defined the exponential
of a matrix via its power series.

e Sylvester (1883) stated the definition of f(A) for general f via the
interpolating polynomial [59]. Buchheim (1886) [10], [33] extended
Sylvester’s interpolation formula to arbitrary eigenvalues.

e Frobenius (1896) [21] showed that if f is analytic then f(A) is
the sum of the residues of (zI — A)~!f(2) at the eigenvalues of

A, thereby anticipating the Cauchy integral representation, which
was used by Poincaré (1899) [54].

*School of Mathematics, The University of Manchester, Manchester, M13
9PL, UK (nick.higham@manchester.ac.uk, http://www.maths.man.ac.uk/ higham,
lijing.lin@manchester.ac.uk, http://www.maths.manchester.ac.uk/"lijing).



2 N. J. Higham and L. Lin

e The Jordan form definition was used by Giorgi (1928) [22], and
Cipolla (1932) [14] extended it to produce nonprimary matrix func-
tions.

e The first book on matrix functions was published by Schwerdtfeger
(1938) [56).

e Frazer, Duncan and Collar published the book Elementary Matri-
ces and Some Applications to Dynamics and Differential Equations
[20] in 1938, which was “the first book to treat matrices as a branch
of applied mathematics” [15].

e A research monograph on functions of matrices was published by
Higham (2008) [31].

3 Theory
3.1 Definitions

We are concerned with functions f : C**™ — C™*™ that are defined
in terms of an underlying scalar function f. Given f(t), one can define
f(A) by substituting A for ¢: e.g.,

1+ ¢2 -
=T s )= - T+ A,
z2 z8 zt
log(l—i—:v)—x—?-l—?—x—k---, lz] < 1,
A2 A3 A
=>log(I+A)=A—7+?—T+---, p(A) < 1.

This way of defining f(A) works for f a polynomial, a rational function,
or a function having a convergent power series (see section 6.1). Note
that f is not evaluated elementwise on the matrix A, as is the case in
some programming languages.

For general f, there are various equivalent ways to formally define a
matrix function. We give three definitions, based on the Jordan canonical
form, polynomial interpolation, and the Cauchy integral formula.

3.1.1 Definition via Jordan canonical form

Any matrix A € C**™ can be expressed in the Jordan canonical form
Z71AZ = J = diag(J1, J2, ..., Jp), (3.1a)
A 1

Ak

Jp = Jk(Ak) = < kaxmk’ (3.1b)

Ak
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where Z is nonsingular and my + mgy + - -+ + m, = n. Denote by
® \i,..., A the distinct eigenvalues of A,

e n; the order of the largest Jordan block in which \; appears, which
is called the index of A;.

We say the function f is defined on the spectrum of A if the values
fOMN), j=0:mi—1, i=1:s (3.2)
exist.

Definition 3.1 (matrix function via Jordan canonical form). Let f be
defined on the spectrum of A € C"*" and let A have the Jordan canonical
form (3.1). Then

f(A):=Zf(1)Z27" = Zdiag(f(Jx))Z ", (3.3)
where f(mk_l) )
Fw)  f(Aw) e =1
f(Jx) = fOw) . ! 5 (3.4)
' f'(Ak)
f(Qk)

The definition yields a matrix f(A) that can be shown to be inde-
pendent of the particular Jordan canonical form.

In the case of multivalued functions such as v/t and logt it is implicit
that a single branch has been chosen in (3.4) and across the Jordan
blocks with the same eigenvalue; the resulting function is called a pri-
mary matrix function. If an eigenvalue occurs in more than one Jordan
block and a different choice of branch is made in two different blocks
then a nonprimary matrix function is obtained (see section 3.1.5).

3.1.2 Definition via interpolating polynomial

Before giving the second definition, we recall some background on poly-
nomials at a matrix argument.

e The minimal polynomial of A € C™"*™ is defined to be the unique
monic polynomial ¢ of lowest degree such that ¢(A) = 0. The
existence of the minimal polynomial is proved in most textbooks
on linear algebra.

e By considering the Jordan canonical form it is not hard to see that
B(t) = 17, (t—Xi)™, where Ay, ..., A, are the distinct eigenvalues
of A and n; is the index of A;. It follows immediately that ¢ is
zero on the spectrum of A (that is, the values (3.2) are all zero for

f(t) = ().
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e Given any polynomial p and any matrix A € C"*", p is clearly
defined on the spectrum of A and p(A) can be defined by substi-
tution.

e For polynomials p and ¢, p(A) = q(A) if and only if p and g take
the same values on the spectrum [31, Thm. 1.3]. Thus the matrix
p(A) is completely determined by the values of p on the spectrum
of A.

The following definition gives a way to generalize the property of
polynomials in the last bullet point to arbitrary functions and define
f(A) in terms of the values of f on the spectrum of A.

Definition 3.2 (matrix function via Hermite interpolation). Let f be
defined on the spectrum of A € C"*™. Then f(A) := p(A), where p is
the unique polynomial of degree less than Y ;_, n; (which is the degree
of the minimal polynomial) that satisfies the interpolation conditions

P(j)(/\i):f(j)()\i), j=0:n;—-1, i=1:s.

The polynomial p specified in the definition is known as the Hermite
interpolating polynomial.

For an example, let f(t) = t'/2? (the principal branch of the square
root function, so that Ret!/? > 0), A = [22], M(A) = {1,4}. Seeking
p(t) with p(1) = f(1) and p(4) = f(4), we obtain

p(t) = F() 3= + FO) =1 = 5(t+2).
- A1/2=p(A):§(A+2J)=%[‘; g]

Several properties follow immediately from this definition:

e f(A) =p(A) is a polynomial in A, where the polynomial p depends
on A.

e f(A) commutes with A.
o f(AT) = f(AT.

Because the minimal polynomial divides the characteristic polyno-
mial, g(t) = det(t — A), it follows that ¢(A) = 0, which is the Cayley-
Hamilton theorem. Hence A™ can be expressed as a linear combination
of lower powers of A: A™ = Z;é cxAF. Using this relation recursively
we find that any power series collapses to a polynomial. For example,

ed =30 AF k! = 70 di A* (but the dy depend on A).
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3.1.3 Definition via Cauchy integral theorem

Definition 3.3 (matrix function via Cauchy integral). For A € C"*™,

1
A)= — I—-A)d
1) = 5 [ 1) eI - A)71a,
where f is analytic on and inside a closed contour I' that encloses A(A).

3.1.4 Multiplicity and equivalence of definitions

Definitions 3.1, 3.2, and 3.3 are equivalent, modulo the analyticity as-
sumption for the Cauchy integral definition [31, Thm. 1.12]. Indeed this
equivalence extends to other definitions, as noted by Rinehart [55]:

“There have been proposed in the literature since 1880
eight distinct definitions of a matric function, by Weyr, Syl-
vester and Buchheim, Giorgi, Cartan, Fantappie, Cipolla,
Schwerdtfeger and Richter ... All of the definitions, except
those of Weyr and Cipolla are essentially equivalent.”

The definitions have different strengths. For example, the interpo-
lation definition readily yields some key basic properties (as we have
already seen), the Jordan canonical form definition is useful for solving
matrix equations (e.g., X? = A, eX = A) and for evaluation when A is
normal, and the Cauchy integral definition can be useful both in theory
and in computation (see section 7.2).

3.1.5 Nonprimary matrix functions

Nonprimary matrix functions are ones that are not obtainable from our
three definitions, or that violate the single branch requirement in Def-
inition 3.1. Thus a nonprimary matrix function of A is obtained from
Definition 3.1 if A is derogatory and a different branch of f is taken in
two different Jordan blocks for A. For example, the 2 x 2 identity matrix
has two primary square roots and an infinity of nonprimary square roots:

2 2
1 0 -1 0 .
_ {1 0 2 __|cosf  sinf 2 T —
|0 —1| — |sinf —cos@ primary).

In general, primary matrix functions are expressible as polynomials
in A, while nonprimary ones are not. The 2 X 2 zero matrix 0y is its
own primary square root. Any nilpotent matrix of degree 2 is also a
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nonprimary square root of Oz, for example [ §], but the latter matrix is
not a polynomial in 0.

The theory of matrix functions is almost exclusively concerned with
primary matrix functions, but nonprimary functions are needed in some
applications, such as the embeddability problem in Markov chains [31,
Sec. 2.3].

3.1.6 Principal logarithm, root, and power

Let A € C™™™ have no eigenvalues on R~ (the closed real axis). We need
the following definitions.

Principal log: X = log A denotes the unique X such that eX = A and
—m < Im )\; < 7 for every eigenvalue \; of X.

Principal pth root: For integer p > 0, X = A'/? is the unique X such
that X? = A and —7/p < arg\; < 7/p for every eigenvalue );
of X.

Principal power: For s € R, the principal power is defined as A% =
es1°8 4 where log A is the principal logarithm. An integral repre-
sentation is also available:

__sin(sm)
- ST

A® A/ (tY/°1 + A)7at, s € (0,1).
0

3.2 Properties and formulas

Three basic properties of f(A) were stated in section 3.1.2. Some other
important properties are collected in the following theorem.

Theorem 3.4 ([31, Thm. 1.13]). Let A € C"*" and let f be defined on
the spectrum of A. Then

(a) F(XAXY) = Xf(A)X;

(b) the eigenvalues of f(A) are f(A;), where the \; are the eigenval-
ues of A;

(c) if X commutes with A then X commutes with f(A);

(d) if A= (Aij) is block triangular then F = f(A) is block triangular
with the same block structure as A, and Fy; = f(Ai);

(e) if A = diag(Ai1,Azz,..., Amm) is block diagonal then f(A) =
diag(f(All)a f(A22)7 s € 3 f(Amm))

Some more advanced properties are as follows.

e f(A) = 0 if and only if (from Definition 3.1 or 3.2) fU)(\;) = 0,
7J=0:n;—-1,i=1:s.
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e The sum, product, composition of functions work “as expected”:
— (sin+cos)(A) = sin A + cos A,
— f(t) = cos(sint) = f(A) = cos(sin A).

e Polynomial functional relations generalize from the scalar case. For
example: if G(f1,...,fm) = 0, where G is a polynomial, then
G(f1(A),..., fm(A)) = 0. Eug,

—sin?A+cos2A=1,

~ (AY/P)P = A for any integer p > 0,

— ' = cos A + isin A.

e However, other plausible relations can fail:

— f(A*) # f(A)* in general,

— el°84 = A but loge” # A in general,

— e? # (eA/*) in general,

— (AB)1/2 # AY/2BY/2 in general,

— e(A+B)t — eAteBt for all t if and only if AB = BA.
Correction terms involving the matrix unwinding function can be
introduced to restore equality in the second to fourth cases [7].

3.3 Fréchet derivative and condition number
3.3.1 Relative condition number

An important issue in the computation of matrix functions is the con-
ditioning. The data may be uncertain and rounding errors from finite
precision computations can often be interpreted via backward error anal-
ysis as being equivalent to perturbations in the data. So it is important
to understand the sensitivity of f(A) to perturbations in A. Sensitivity
is measured by the condition number defined as follows.

Definition 3.5. Let f : C"*" — C™*" be a matriz function. The
relative condition number of f is

. If(A+E) - f(A)ll
cond(f,A)=lun SIP SRl

where the norm is any matriz norm.

3.3.2 Fréchet derivative

To obtain explicit expressions for cond(f, A), we need an appropriate
notion of derivative for matrix functions. The Fréchet derivative of a
matrix function f : C"*" — C™ " at a point A € C™*" is a linear
mapping L¢(A,-) : C**™ — C™*" such that for all E € C"*"

f(A+ E) = f(A) + Ls (A, E) + o(|| E)-
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It is easy to show that the condition number cond(f, A) can be charac-
terized as

cond(f,A) = M%g”i”,
where .
125 (A)]| := mpax —’W—

3.3.3 Condition number estimation

Since Ly is a linear operator,
vec(Ls(A, E)) = Kf(A)vec(E)

where Kf(A) € C™*"’ is a matrix independent of E known as the Kro-
necker form of the Fréchet derivative. It can be shown that ||L¢(A)|r =
| Kf(A)|l2 and that |Ls(A)||; and ||[K¢(A)|: differ by at most a factor
n. Hence estimating cond(f, A) reduces to estimating || K¢(A)| and this
can be done using a matrix norm estimator, such as the block 1-norm
estimator of Higham and Tisseur [39)].

4 Applications

Functions of matrices play an important role in many applications. Here
we describe some examples.

4.1 Toolbox of matrix functions

In software we want to be able to evaluate interesting f at matrix argu-
ments as well as scalar arguments. For example, trigonometric matrix
functions, as well as matrix roots, arise in the solution of second order
differential equations: the initial value problem

d?y

oz TAY=0, y(0) = w0, ¥'(0) = o

has solution
y(t) = cos(VAt)yo + (VA) ™" sin(vV'At)ys,

where v/A denotes any square root of A. On the other hand, the differ-
ential equation can be converted to a first order system and then solved
using the exponential:

HE )L



