FUNDAMENTALS OF ADSGRPTION

FUNDAMENTALS OF ADSORPTION

Proceedings of the Fifth International Conference on Fundamentals of Adsorption

edited by

M. Douglas LeVan University of Virginia

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

Distributors for North America:

Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA

Distributors for all other countries:

Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Copyright © 1996 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

Editor

M. Douglas LeVan is Professor of Chemical Engineering at the University of Virginia. He received his B.S. in chemical engineering from the University of Virginia (1971) and his Ph.D. from the University of California, Berkeley (1976). After two years at Amoco Production Company's Research Center in Tulsa, Oklahoma, he joined the faculty of the University of Virginia, where he has been for 18 years. He has been Fulbright Senior Scholar to Portugal (1985-86) and France (1993-94). He is section editor of the Adsorption and Ion Exchange section of Perry's Chemical Engineers' Handbook, has edited 5 books, and has published about 70 technical papers.

Professor LeVan has been active in society programming within the AIChE and the International Adsorption Society. Within the AIChE, he has been Chair of Area 2e (Adsorption and Ion Exchange, 1985-87), Chair of Group 1 (Fundamentals, 1989-91), and is currently Second Vice-Chair of the Separations Division (Group 2). He was Meeting Program Vice-Chair of the AIChE 1989 Annual Meeting in San Francisco. He has been a Director of the International Adsorption Society since 1992 and is a member of the Editorial Advisory Board of the society's journal Adsorption.

His research considers several aspects of adsorption equilibria and fixed-bed adsorption. His group considers theory and experiments on adsorption equilibria for systems ranging from single components an nonideal mixtures such as coadsorbed vapors of hydrocarbons and water. The group has been involved in modeling various fixed-bed processes including dispersive phenomena. Recent interest has been on predicting the performance of systems over repeated cycles. Applications emphasize vapor-phase processes and include TSA, PSA, and adsorptive refrigeration.

Preface

The Fifth International Conference on Fundamentals of Adsorption was held May 13-18, 1995 at the Asilomar Conference Center, Pacific Grove, California. This conference continued the tradition, begun in 1983, of holding an international conference on fundamental aspects of adsorption every three years for scientists and engineers from various backgrounds and disciplines. Prior conferences were held at Schloß Elmau, Bavaria, Germany (1983), Santa Barbara, California (1986), Sonthofen, Germany (1989), and Kyoto, Japan (1992). This conference was organized completely under the auspices of the International Adsorption Society. It was attended by 196 conferees from 24 countries.

The technical program included two plenary lectures, 80 oral papers, 88 poster papers, and a panel discussion on industrial perspectives. The plenary lectures, with engineering and scientific orientations, were presented by Motoyuki Suzuki of the University of Tokyo and William A. Steele of the Pennsylvania State University. The panel discussion was organized by John D. Sherman with panelists J. P. Ausikaitis (UOP, Japan), T. Otowa (Kansai Coke & Chemicals Co., Ltd., Japan), J. D. Y. Ou (Exxon Chemical Co.), R. Pierantozzi (Air Products and Chemicals, Inc.), A. F. Venero (VTI Corp.), and U. von Gemmingen (Linde A.G. VA/EVA, Germany). This panel session resulted in a current effort, led by R. Pierantozzi and with the support of the National Institute of Standards and Technology, to establish a repository for well characterized adsorbents.

Many persons participated in the organization of the conference. The Conference Committee was made up of M. D. LeVan (Chair) of the University of Virginia, J. P. Ausikaitis (Vice-Chair) of UOP, Japan; B. K. Kaul (Vice-Chair) of Exxon Research and Engineering Co.; K. S. Knaebel (Registrar) of Adsorption Research, Inc.; D. K. Friday (Arrangements Coordinator) of Guild Associates, Inc.; M. Jaroniec (International Participation) of Kent State University; J. D. Sherman (Industrial Panel) of UOP; G. Carta of the University of Virginia; F. Meunier of LIMSI/CNRS, France; A. L. Myers of the University of Pennsylvania; A. E. Rodrigues of the University of Porto, Portugal; O. Talu of Cleveland State University; and K. Tsutsumi of Toyohashi University of Technology, Japan. As Conference Chair, I would like to express a very grateful thank you to Barbara, my wife, for all of her support and to Kent and Pam Knaebel, Dave Friday, Mietek Jaroniec, and John Sherman for all of their hard work and special efforts in working through the details of putting the conference together.

Members of the Scientific Advisory Board, together with the Conference Committee, selected papers for presentation from the large number (226) of proposals-to-present received and served as session chairs. This Board was formed from Officers and Directors of the International Adsorption Society. Participating were A. L. Myers (President), M. Suzuki (Vice-President), K. S. Knaebel (Secretary), S. Sircar (Treasurer), J. P. Ausikaitis, G. V. Baron, D. Basmadjian, A. S. T. Chiang, M. D. LeVan, Y. H. Ma, A. B. Mersmann, F. Meunier, A. E. Rodrigues, W. Rudzinski, D. M. Ruthven, W. A. Steele, Y. Takeuchi, and D. Tondeur.

此为试读,需要完整PDF请访问: www.ertongbook.com

Ten Ph.D. student aides helped with the operation of the conference. We are grateful to Scot Appel, Yuri Berezinsky, Roberta Brown, Brian Dela Barre, Eric Engwall, Peter Gordon, John Peck, Scott Savitz, Suzanne Sowers, and Thieu Vuong.

The conference, especially the high level of international participation, would not have been possible without the generous financial support from many organizations. These included the National Science Foundation, the International Science Foundation, the Japan Society on Adsorption, Air Liquide, Air Products & Chemicals, Inc., The BOC Group, Exxon Research and Engineering Co., Guild Associates, Inc., Praxair, and UOP. In addition, considerable foreign travel support was received by delegates from organizations in their home countries.

The International Adsorption Society was formed at the Third International conference on Fundamentals of Adsorption held at Sonthofen in 1989. The Society co-sponsored the 1992 conference in Kyoto. It has grown rapidly and currently draws members from many disciplines including material science, chemistry, physics, biochemistry and biotechnology, and chemical, civil, mechanical, and environmental engineering. In 1994, the Society launched its own journal, "Adsorption," edited by K. S. Knaebel and published by Kluwer Academic Publishers.

This proceedings volume contains both of the plenary lectures and 131 of the oral and poster papers presented at the conference. All contributions were subjected to a rigorous review process, with almost all papers receiving two reviews from a panel of approximately 100 reviewers. In what follows, the plenary lectures are presented first, in their order of presentation, followed by the oral and poster papers arranged alphabetically by first author.

The Sixth International Conference on Fundamentals of Adsorption is being organized by Francis Meunier for 1998. It will undoubtedly have a wonderful French flavor, magnificent surroundings and, of course, incomparable subject matter.

M. Douglas LeVan, Conference Chair Department of Chemical Engineering University of Virginia Charlottesville, VA 22903-2442 USA

December 1995, Charlottesville

Table of Contents

Application of Adsorption Technology for Environmental Control

Plenary Lectures

M. Suzuki	3
M. J. Bojan and W. A. Steele	17
Contributed Papers	
Development and Characterisation of Specialty Activated Carbons from	
Lignite	
S. J. Allen, V. Balasundaram, and M. Chowdhury	35
Continuous Isotope Separation by Simulated Countercurrent Moving	
Bed Chromatography and Ion Exchange	
B. M. Andreev, A. V. Kruglov, and Y. L. Selivanenko	43
Pressure Behavior during the Loading of Adsorption Systems	
B. K. Arumugam and P. C. Wankat	51
Assessment of Connectivity in Mixed Meso/Macroporous Solids Using	
Nitrogen Sorption	
P. N. Aukett and C. A. Jessop	59
The Kinetics of Adsorption of Water from Aqueous Ethanol Using 3A	
Molecular Sieves	
D. C. S. de Azevêdo and J. C. Gubulin	67
C5 Separation in a Vapor Phase Simulated Moving Bed Unit	
R. Baciocchi, M. Mazzotti, G. Storti, and M. Morbidelli	75
Influence of Surface Heterogeneity on Thermodynamics of Adsorption.	
Computer Simulation Study	
V. Bakaev and W. Steele	83
Influence of Physico-Chemical Characteristics of Adsorbent and	
Adsorbate on Competitive Adsorption Equilibrium and Kinetics	
G. K. Bharat, M. K. N. Yenkie, and G. S. Natarajan	91
Problems Associated with Thermodynamic Analysis of Gas-Solid	
Adsorption Isotherms Measured at High Pressures	
P. Bräuer, M. Salem, M. v. Szombathely, M. Heuchel, P. Harting,	
and M. Jaroniec	101
Chemical Character of Active Carbon Surface After Oxidation in Liquid	
or Gas Phase	
B. Buczek, T. Grzybek, and A. Bernasik	109
Investigation of the Chromium-Copper-Silver Catalyst Distribution in	
the Porous Structure of Active Carbon Carrier Granules	
B. Buczek, S. Zietek, and A. Swiatkowski	117

Temperature Measurements to Characterize Dispersion Within PSA Beds	
L. C. Buettner, R. S. Brown, and D. K. Friday	123
Utilization of Zeolites for Processes of Gas Desulphurization	
M. Bülow and A. Micke	131
Sorption Kinetics of Oxygen on CaA Type Molecular Sieve	
M. Bülow, A. Micke, and J. W. Murray	139
Binary and Ternary Adsorption Equilibria at High Pressure on Molecular	
Sieves	
G. Calleja, J. Pau, P. Pérez, and J. A. Calles	147
Sorption Phenomena on Babaçu Starch	
C. L. Cavalcante Jr., J. Capelo, R. M. Almeida, and D. S. Campos	155
Adsorbed Solution Theory - A One-Dimensional Analysis	
A. S. T. Chiang, F. Y. Wu, and C. K. Lee	163
Chromatographic Study and Molecular Simulation on Adsorption in	
Supercritical Fluid	
K. Chihara, K. Omori, N. Kato, R. Kaneko, and Y. Takeuchi	171
Control of Adsorption Rate on Zeolite by Chemical Vapor Deposition	
K. Chihara, K. Sugizaki, N. Kato, H. Miyajima, and Y. Takeuchi	179
Dynamics of Two-Adsorbent Beds with Flow-Reversal for Gas Separation	
M. Chlendi and D. Tondeur	187
Experiments on a Rapid Pressure Swing Adsorption Process for Air	
Separation	
Ct. Chou and SC. Kuang	195
A Parametric Study of Pressure Swing Adsorption for the Recovery of	
Carbon Dioxide from Flue Gas	
KT. Chue, JN. Kim, YJ. Yoo, SH. Cho, and KS. Park	203
Structural Analysis by Neutron Diffraction of Nitrogen Sorbed Phases on	
Silicalite I and ZSM-5 (Si/Al = 23) Zeolites	
J. P. Coulomb, P. Llewellyn, C. Martin, Y. Grillet, and	
J. Rouquerol	211
Analysis of High-Pressure Adsorption Equilibria and Kinetics	
L. Czepirski, B. Laciak, and S. Holda	219
Optimization of Adsorptive Storage Systems for Natural Gas	
L. Czepirski and M. Balys	227
Application of Adsorption from Solutions for Characterizing Inorganic	
Sorbents	
A. Dabrowski, J. Goworek, P. Podkoscielny, and J. K. Garbacz	235
Modeling and Simulation of SMB Technology for Pharmaceutical and	
Fine Chemical Applications	
H. W. Dandekar, A. K. Chandhok, and J. W. Priegnitz	243
An Equilibrium Model for Pressure Swing Adsorption Process with	2,5
Equalization Step	
S. J. Doong	251

Measurement of Adsorption Equilibria of Pure and Mixed Corrosive Gases: The Magnetic Suspension Balance)
F. Dreisbach, R. Staudt, M. Tomalla, and J. U. Keller	259
	255
Fast Numerical Solution to Adsorption Column Dynamics with	L.
Application to Enthalpy Recovery Wheels and Cold Start Hydrocard	oon
Traps	266
S. R. Dunne	
Heats of Adsorption of Polar and Non-Polar Gases in Homogeneous	s and
Heterogeneous Adsorbents	
J. Dunne, R. Mariwala, M. Rao, S. Sircar, R. J. Gorte, and	
A. L. Myers	277
Glycocalyx Adsorption Enhances Biocompatibility of	
Poly(Methyl Methacrylate)	
R. G. A. Faragher, S. Nagri, S. Dropcova, S. V. Mikhalovsky,	
A. W. Lloyd, G. W. Hanlon, C. J. Olliff, P. R. Gard, and	
S. P. Denyer	285
Isotherms from Temperature-Programmed Desorption Experiments	
F. Foeth, R. van der Vaart, H. Bosch, and T. Reith	
Studies of Active Carbons of Controlled Structural Properties	
K. P. Gadkaree, M. Heuchel, and M. Jaroniec	301
Size Effects, Thermodynamic Consistency and Non-Ideal Energetic	
Behavior of Adsorption Isotherms in Microporous Materials	
(Extended Abstract)	
M. Giona, M. Giustiniani, and A. Viola	309
Monte Carlo Simulations of Preferential Adsorption: the Effects of	
Energetic Heterogeneity and of Surface Diffusion (Extended Abstrac	
M. Giona, M. Giustiniani, and A. Viola	
Investigations of Adsorption Properties of Disperse SiO2 Surface b	
Means of Laser Spectroscopy Methods	,
Y. D. Glinka, T. B. Krak, and S. N. Naumenko	313
Adsorption from Ternary Liquid Mixtures on Porous Silica Gels	
J. Goworek, A. Dabrowski, and A. Nieradka	321
The Comparison of the Static and Dynamic Adsorption of Benzene	
Methanol and Acetone as Single Adsorbates and Binary Mixtures	,
H. Grajek, A. Swiatkowski, and J. Goworek	329
A Microscopic Study of Multicomponent Adsorption Equilibrium	
Porous Solids	ш
V. Gusev, J. A. O'Brien, C. R. C. Jensen, and N. A. Seaton .	337
Gas Adsorption Characteristics of Cation-Exchanged Natural Zeolit	
KS. Ha	34,
Convective Approximation of Adsorption Processes	25'
G. Harriott and A. Tsirukis	
Simulation of Single Pellet Adsorption Kinetics with Experimenta	шу
Determined Dusty Gas and Surface Diffusion Coefficients	20
R. Hartmann and A. Mersmann	36

Thermal Applications of Zeolite/Water Adsorption Processes	
A. Hauer, S. Fischer, and E. Lävemann	369
Sorption Kinetics of n-Paraffins in MFI-type Zeolites Investigated by	
micro-FTIR	
M. Hermann, W. Niessen, and H. G. Karge	377
Effect of Pore Size Distribution on the Prediction of Multicomponent	
Adsorption Equilibria	
X. Hu and D. D. Do	385
Sorption Kinetics of Gases in Heterogeneous Solids	
X. Hu and D. D. Do	393
Organized Molecular States in Carbon Micropores	
T. Iiyama, K. Nishikawa, T. Otowa, T. Suzuki, and K. Kaneko	401
Study of Heat Transfer Characteristics of MAT-type Adsorber for	
Adsorption Heat Pump	
M. Ito, F. Watanabe, and M. Hasatani	409
Thermodynamically Consistent Analysis of Silica Surface Heterogeneity	
Using Alkane and Alkene Adsorption Isotherms	
J. Jagiello, T. J. Bandosz, K. Putyera, and J. A. Schwarz	417
Studies of Energetic Heterogeneity of Porous Solids by Using Gas	
Chromatographic Data	
M. Jaroniec and J. Choma	425
Pore Size Distributions of Microporous Adsorbents using Experimental	
Isotherms and Molecular Simulation	
C. R. C. Jensen, G. Papadopoulos, N. A. Seaton, V. Gusev, and	
J. A. O'Brien	433
Adsorptive Waste Gas Purification and Solvent Recovery by Inert Gas	
Regeneration	
H. Kajszika and A. Mersmann	441
The Role of Recovery Step in N2-PSA using Zeolite Molecular Sieve	
JN. Kim, KT. Chue, JD. Kim, and SH. Cho	449
A Novel Pressure Swing Adsorption System for Ammonia Synthesis	
K. S. Knaebel and E. L. Cussler	457
Parametric Studies of a Silica Gel Honeycomb Rotor Adsorber Operated	
With Thermal Swing	
A. Kodama, M. Goto, T. Hirose, and T. Kuma	465
Selective Adsorption and Catalysis on Aluminophosphate, MCM-41	
Materials: Spectroscopy and Simulation	
C. A. Koh, R. I. Nooney, S. Tahir, C. C. Tang, and G. Georgiou	473
Removal Efficiency of Volatile Organic Compounds, VOCs, by Ceramic	
Honeycomb Rotor Adsorbents	
T. Kuma, Y. Mitsuma, Y. Ota, and T. Hirose	481
Simulation of an Adsorptive Deodorizing Rotor for Exhaust Gas	
Treatment	
SM. Lai	489

Complex Carbon-Silica Adsorbents: Preparation, Properties and Some	
Applications as Model Adsorbents	
R. Leboda, A. Gierak, B. Charmas, and Z. Hubicki	497
The Performance of the "Extended" Linear Driving Force Model to	
Simulate Adsorptive Processes using "Large-Pore" Materials	
A. Leitão and A. Rodrigues	505
Diffusion of N-paraffins in Pillared and other Expanded Clays	
B. Liao, M. Eic, D. M. Ruthven, and M. L. Occelli	513
Synthesis of SiO2-Al2O3 Xerogels: Effect of pH and Composition on	
the Surface Area, Pore Volume, and Pore Structure	
C. Lin and J. A. Ritter	521
Diffusion in Carbon Molecular Sieves	
H. Liu and D. M. Ruthven	529
The Adsorption of Phenol and its Reaction in the Presence of Oxygen on	
Granular Activated Carbon	
K. F. Loughlin, M. M. Hassan, E. O. Ekhator, and G. F. Nakhla	537
Algebraic Prediction of the Behavior of a Three-step One Column PSA	
Unit	
J. M. Loureiro, S. A. Figueiredo, M. M. Alves, Z. P. Lu, and	
A. E. Rodrigues	545
Adsorption and Permeation Properties of Vycor Glass Membranes	
Y. H. Ma, S. Pien, Y. She, and A. Shelekhin	553
Molecular Simulation of Pure Fluid and Binary Mixture Adsorption in	
Buckytubes and MCM-41	
M. W. Maddox and K. E. Gubbins	563
Simulation Studies of Pore Blocking Hysteresis in Model Porous	
Carbon Networks	
M. W. Maddox, C. M. Lastoskie, N. Quirke, and K. E. Gubbins	571
Non-Isothermal Effects of PSA for Air Purification	
J. J. Mahle, D. E. Tevault, and M. D. LeVan	579
Measure of the Translational Mobility Dt of Methane Molecules Sorbed	
in the One-Dimensional Micropore Network of the AlPO4-5 Zeolite	
C. Martin, J. P. Coulomb, Y. Grillet, and R. Kahn	587
Twofold Description of Percolation in Porous Media	
V. Mayagoitia, F. Rojas, I. Kornhauser, G. Zgrablich, and	
R. J. Faccio	595
Simulations of Adsorption and the Design of Activated Carbons	
T. J. Mays	603
Adsorption Properties of NaX and BaX Zeolites: Correlation between	
Structural and Thermodynamic Results on Para- and Meta-xylene	
Adsorption	
C. Mellot, JP. Bellat, E. Pilverdier, M. H. Simonot-Grange, and	
D. Espinat	611

Simulation Study of Coupled Membrane/Pressure Swing Adsorption	
Processes for VOC Removal from Air	
A. M. Mendes, M. A. Alves, C. A. V. Costa, K. V. Peinemann, and	
K. Ohlrogge	619
Entropic Analysis of Regenerative Adsorptive Refrigeration Cycles	
F. Meunier, F. Poyelle, and M. D. LeVan	627
Reversing Effect of Hydrostatic Pressure on Liquid-Phase Adsorption	
M. Miyahara, S. Iwasaki, and M. Okazaki	635
Heat Effect and Performance in Pressure Swing Adsorption	
H. Miyajima, T. Hirose, and M. Goto	643
Thermodynamics of Adsorption of C8 Aromatics Solutions on Y Zeolites	
V. Moya-Korchi, B. Tavitian, and A. Méthivier	651
Characterization of Rough Surfaces	
A. V. Neimark	659
Theoretical and Experimental Studies of Capillary Hysteresis in MCM-41	
A. V. Neimark, P. I. Ravikovitch, S. C. O. Domhnaill, F. F. Schüth,	
and K. K. Unger	667
Molecular Selectivity in Slit Shaped Micropores	
D. Nicholson and R. F. Cracknell	675
Self Diffusion and Transport in Slit Shaped Pores	
D. Nicholson and R. F. Cracknell	683
Studies on Adsorption Characteristics of Micropores Composed of	
Graphitic Micro-crystallines by Monte Carlo Simulations	
T. Nitta and T. Okayama	691
The Determination of Surface Energetic Heterogeneity Using Model	
Isotherms Calculated by Density Functional Theory	
J. P. Olivier	699
Activation Mechanism, Surface Properties and Adsorption Characteristics	
of KOH Activated High Surface Area Carbon	
T. Otowa, Y. Nojima, and M. Itoh	709
Magnetic Field Effect on Water Adsorption	
S. Ozeki, J. Miyamoto, S. Ono, C. Wakai, and T. Watanabe	717
Polypeptide Adsorption onto Hydroxyapatite, Silica, and Chrysotile	
Asbestos: Separation of α-Helix and Random Coil	
S. Ozeki, K. Ohtani, T. Sato, Y. Oowaki, and C. Morita	725
Simulated Moving Bed Chromatographic Reactors	
V. B. Pai, J. L. Gainer, and G. Carta	733
A Mossbauer Study of Iron Adsorption on Active Carbons	
A. E. Pol'shina, A. M. Puziy, E. V. Pol'shin, R. G. A. Faragher,	
and S. V. Mikhalovsky	741
On Tailoring the Surface Chemistry of Activated Carbons for Their Use	
in Purification of Aqueous Effluents	
L. R. Radovic, J. I. Ume, and A. W. Scaroni	749

	xiii
The Viability of Mordenite for the Separation of Oxygen and Nitrogen:	
Evidence from Molecular Modeling	
A. J. Richards, S. Holt, and P. Barnes	757
Modeling and Operation of a Simulated Moving Bed for the Separation	
of Optical Isomers	
A. E. Rodrigues, J. M. Loureiro, Z. P. Lu, and L. S. Pais	765
Surface Heterogeneity Effects in Simple Ion Adsorption at	
Oxide/Electrolyte Interfaces	
W. Rudzinski and R. Charmas	773
Adsorption of Methane onto Activated Carbon by a Graphite Crystal	
Aggregate Model	
A. Sakoda, N. Oka, and M. Suzuki	781
Adsorption Cooling for Automobiles Utilizing Exhaust Heat	
A. Sakoda, T. Sano, and M. Suzuki	789
Adsorption Process for the Fractionation of Citrus Oil by Supercritical	
Carbon Dioxide	
M. Sato, M. Goto, and T. Hirose	797
Hydrogen Isotope Exchange via Catalyzed Phase Transfer	
A. L. Schwirian-Spann and V. Van Brunt	805
Adsorption Dynamics in a Monolithic Adsorbent	010
D. B. Shah, S. Perera, and B. D. Crittenden	813
Using Semi-Empirical Algorithms in the Development of Linear	
Driving Force Approximations for Complex Intraparticle	
Diffusion/Convection Models	821
P. Sheng, A. M. M. Mendes, and C. A. V. Costa	821
Mathematical Simulation of Pressure Swing Adsorption Cycle with	
Pressure Equalization Step	829
H. Shin	029
Swing Adsorption Processes	
A. I. Shirley and N. O. Lemcoff	837
Desorption by Purge (Extended Abstract)	037
S. Sircar and T. C. Golden	845
Adsorption Characteristics of Carbon Filter Materials	0.10
J. Skvoretz, S. F. Ortaldo, J. A. Ritter, and J. H. Wong	847
Removal of Trace Pollutants by Adsorption: Density Functional Theory	
and Monte Carlo Simulation	
S. L. Sowers and K. E. Gubbins	855
Generalized Isotherms for Mono- and Multicomponent Adsorption	
R. Staudt, F. Dreisbach, and J. U. Keller	865
An Engineering Model for Adsorption of Gases onto Various Media	200 2000
R. Subramanian and C. T. Lira	873
Comparison of Local Equilibrium Model and Mass Transfer Model for	
Prediction of PSA Performance	
SS. Suh, KH. Moon, YM. Kim, BK. Na, and H. K. Song	881

Weastrement of Adsorption Dynamics Using the Thermal Prequency	
Response Method	
L. M. Sun, V. Bourdin, Ph. Grenier, and F. Meunier	889
A Theoretical Study on Interactions between Silica Gel and Adsorbed	
Molecules by using ab initio MO Method	
T. Suzuki, H. Tamon, and M. Okazaki	897
An ab Initio Study on Adsorptive Interactions of Alcohols and Aromatic	
Compounds onto the Surface of Silica Gel	
T. Suzuki, H. Tamon, and M. Okazaki	905
Adsorption from Aqueous Solutions of Selected Heavy Metal Cations on	
Chemically Modified Activated Carbon	
A. Swiatkowski, G. Szymanski, and S. Biniak	913
Simultaneous Solution of the Adsorption Integral Equation from a Set of	
Isotherms at Different Temperatures: a Way for More Detailed	
Characterization of Heterogeneous Adsorbents	
M. v. Szombathely, K. Koch, N. Neugebauer, and P. Bräuer	921
Removal and Recovery of a Substitute for Chlorofluorocarbon by High	
Silica Zeolite	
Y. Takeuchi, N. Miyata, H. Isozaki, and S. Asano	929
Biological Activated Carbon Treatment of Waste Water Containing	
Organics and Heavy Metal Ions	
Y. Takeuchi, Y. Suzuki, K. Mochidzuki, Y. Yagishita, T. Fukuda,	
H. Amakusa, and H. Abe	937
Prediction of Adsorption of Polar and Non-Polar Gases on Silicalite by	
Molecular Simulation	
O. Talu and A. L. Myers	945
Molecular Diffusion in a Single Zeolite Crystal	
O. Talu, D. B. Shah, and S. Sun	953
Appearance of Irreversible Adsorption of Nucleophiles on Carbonaceous	
Adsorbents from Liquid Phase	
H. Tamon, M. Atsushi, and M. Okazaki	961
Nonidealities in Vapor-Phase Coadsorption of Organic Compounds and	
Water on Activated Carbon	
S. M. Taqvi and M. D. LeVan	969
Performance of a Parallel Passage Adsorbent Contactor	
C. Thaeron and D. M. Ruthven	977
Adsorption-induced Phase Transition of ZSM-5 Zeolites	
K. Tsutsumi, K. Chubachi, A. Matsumoto, and T. Takaishi	987
Adsorption Isotherms of Associating Fluids in Slit-like Pores. A Monte	
Carlo Simulation Study	
L. F. Vega, E. A. Müller, L. F. Rull, and K. E. Gubbins	993
Equilibria in Pressure Swing Adsorption Processes – Experimental and	,,,
Theoretical Needs	
U. von Gemmingen and A. B. Mersmann	1001
	1001

Heats of Adsorption from Molecular Models of Adsorption in	
Heterogeneous Solids	
T. Vuong and P. A. Monson	1009
Solid/Solid Adsorption and Preparation of Ethylene Adsorbents	
Y. Xie, N. Bu, X. Tong, J. Zhang, K. Wang, X. Cai, J. Fu, Z. Liu,	
C. Lin, and Y. Tang	1019
Predicting the Separation Performance in Ion-Exchange Chromatography	
of Proteins	
S. Yamamoto	1027
Dynamics and Simulation of PSA Processes for Hydrogen Separation	
J. Yang, S. Han, C. Cho, CH. Lee, and H. Lee	1035
New Sorbents for Olefin-Paraffin and Acetylene Separations by	
π -Complexation	
R. T. Yang, E. S. Kikkinides, and R. Foldes	1043
Chitosan Dextran-DEAE Composite for Separation of Proteins:	
Adsorption of BSA	
H. Yoshida and Y. Fujiwara	1051
Adsorption of Lysine on Activated Carbon Fibers: I. Equilibria	
H. Yoshida, T. Fukunaka, and T. Horita	1059
RPSA Air Separation: Influence of Selectivities and Transport Properties	
of the Adsorbents on the Performance	
LQ. Zhu, G. V. Baron, and H. Verelst	1067
Author Index	1075
ಪ್ರಾರಂಭ ಮನ್ನು ಕ್ರಾರ್ಥವರು ಅವರ	

Dr. Motoyuki Suzuki, Professor and Director General of the Institute of Industrial Science, University of Tokyo, graduated from the Department of Chemical Engineering, University of Tokyo in 1963. He finished Ph.D. courses and dissertation work on transfer processes in packed beds at Professor Daizo Kunii's Laboratory. Beginning in 1969, he spent two years as a postdoctoral research fellow with Professor J. M. Smith at the University of California, Davis, where he worked on adsorption kinetics using chromatographic technique. He started his laboratory at the Institute of Industrial Science in Roppongi after he returned from the USA in 1971 and has been working since on environmental and chemical engineering research and graduate education.

His current activities cover application of adsorption technologies in the field of environmental control and management, development of adsorptive separation processes, development of new membranes from the standpoint of adsorptive fouling, molecular simulation of adsorption and diffusion kinetics, mathematical modeling of water quality in natural environment, carbon cycle modeling of terrestrial ecosystems, fundamentals of mammalian cell attachment and growth, development of artificial liver module, etc.

Dr. Suzuki is the President of the International Adsorption Society. He has authored more than 200 papers and in the area of adsorption, published Adsorption Engineering (Kodansha/Elsevier, 1990) and Kasseitan-Kiso to Oyo (Activated Carbon - Fundamentals to Application, Kodansha, 1992). He was editor of Fundamentals of Adsorption (the proceedings of the Fourth International Conference on Fundamentals of Adsorption, held at Kyoto in 1992). He was awarded the Doctoris Honoris Causa from University of Veszprem, Hungary in 1991 and was honored by the Society of Chemical Engineers, Japan with the Distinguished Paper Award (1976) and Research Award (1994) and by the Japan Society of Water Environment with its Academic Award (1995).