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Preface

I cannot believe that God plays dice with the cosmos.
Albert Einstein.

We throw the dice. It is up to the Lord to fix how they are to fall.
Proverbs 16:33.

T HE basic rules of quantum mechanics are not at all complicated: the main
problem is the hurdle of unfamiliarity. We have no right to expect that
‘everyday’ experience will be of any help in those regions of physics which
cannot be handled in an everyday way. This is easy to accept. Yet it has
taken centuries to learn this lesson, and it has only been relatively recently
that physicists have been forced to accept that ‘everyday’ mechanics must
be modified to deal with phenomena on the cosmological or on the
atomic scale. In the main, quantum mechanics is concerned with the
atomic scale. Moreover, quantum mechanics is statistical in nature: it deals
with questions of probability. This is in itself a psychological barrier for
many people: even Albert Einstein was inflexibly opposed to a theoretical
scheme which leaves so much to chance.

The basic rules are laid down in the first three chapters and repeatedly
illustrated by reference to one and only one example: the states of
polarization of a single photon. At this stage the mathematics is kept as
simple as it can be, since it is important in a subject where conceptual
difficulties may be severe not to make matters worse!

Understanding the first three chapters is not the same as being able to
use quantum mechanics. The rules may be simple, but the range of
applications is very rich, and the solutions of some problems lie well
beyond the reach of present mathematical expertise. In order to be a
competent quanium ‘mechanic’, one must become familiar with techniques
appropriate to more general systems, and understand why classical ideas
like energy and momentum reappear in quantum mechanics. Such topics.
along with their applications in particular to electron spin. the hydrogen
atom, and the harmonic oscillator, take us up to chapter 11

Very few realistic quantum problems are exactly solvable, und the next
six chapters deal with the more frequently used approximation methods.
Throughout | have tried to offer realistic applications of each method. to
show that they all have a genuine value. The book ends with a brief sketch
of a few of the many difficulties and problems which have plagued the
quantum philosophers from the very beginning.

Though the text oniginates {rom two undergradusic courses given il
King's College. it 1s not a mere expansion of the lecture notes: mosi topics



Vi Preface

are presented in much greater depth. The emphasis throughout is on a
careful and precise statement of quantum principles, with the mathematics
no more complicated than is required for this aim. T have not followed the
historical development of the subject, fascinating though it is, as it covers
25 years of groping and false starts. I feel that the best time to meet, for
example, Bohr's 1913 model of the hydrogen atom is after meeting
Schrodinger’s 1925 model. In this way, one may appreciate much more
fully both the brilliance and the shortcomings of Bohr’s approach.

There are problems scattered through the text to encourage the rcader to
test his grasp of the subject reasonably frequently. Sometimes the result of
a problem is used at a later point in the text; this should not cause any
difficulty. When there is a need for techniques which can be found in any of
the dozens of books on mathematical methods, they are not reproduced;
instead they are summarized as lists of mathematical prerequisites.

It is obvious that the author of a book such as this must owe a great
deal to others. In particular I wish to acknowledge both the helpful dis-
cussions with several colleagues, especially Professor E. J. Burge, and the
very many texts on quantum mechanics which already exist: these are so
numerous that it would be impracticable to list them all, and invidious to
list only some. I am grateful to the Editors of Physics Today for permission
to include the quotations on pp. 103 and 122. Several of the diagrams,
mainly in chapters 16 to 18, were generated by FORTRAN programs
invoking the very useful DIMFILM routines available at the University of
London Computer Centre.

King's College, London.
April 1981 J.L.M.
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1. Basics

Why do we need quantum mechanics?

ITis now about three hundred years since Newton laid the foundations of his
mechanics, and rather more than a hundred since Maxwell formulated the
equations of electromagnetic theory. Up till about the end of the nineteenth
century it was generally believed that Newtonian mechanics and Maxwell’s
equations were the complete and final expression of the basic laws of physics,
and that future progress lay merely in minor refinements and more exact
solutions. This belief was not unreasonable, since the success of Newtonian
mechanics had been so spectacular till then. It had even been said by some
that there was nothing left to be discovered by the next generation! However,
there were misgivings; in connection with an apparently insurmountable
difficulty in black-body radiation, Lord Kelvin referred in 1904 to ‘a cloud
which has obscured the brilliance of the molecular theory of heat and light
during the last quarter of the nineteenth century’; and indeed it was becoming
clear that certain awkward experimental results would compel a major theo-
retical change. It was not till 1925 that the final shape of the ‘new’ dynamics
was found; since then the basic ideas have not changed.

From our present point of vigw, perhaps the most important feature of
Newtonian mechanics is that it is deterministic. If we know every detail of the
state of a physical system at a particular time, then we are able in principle to
predict the precise result of an observation made at a later time. However, to
know whether the physical world is indeed deterministic we must make an
appeal to experiment, and experiment at the atomic level apparently suggests
that the physical world is not deterministic (at least, not in the sense just
described). Thus Newtonian mechanics needs to be modified.

Why then has Newtonian mechanics been so successful? An important
feature of quantum mechanics is that certain fundamental physical quantities
(previously believed to be continuous) are observed to take only a discrete
set of values. For example, angular momentum will take a value which is an
integer multiple of a basic unit, $h = 0-527 x 10 3* joule-seconds (J s), and no
other value. This ‘natural’ unit is almost unimaginably small compared with
‘everyday’ angular momenta, and it is not surprising that it was overlooked.
Generally speaking, it is correct to use Newtonian mechanics for systems big
enough or massive enough for quantum effects to be negligible, e.g. a railway
train, or even a particle large enough to be visible in an optical microscope.

Will quantum mechanics survive, or will it be modified as Newtonian
mechanics has been? No-one knows, but the history of science suggests that
we would do well not to accept any theory as necessarily final, however
beautiful or however reasonable it may seem.
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The photoelectric effect

A good example of a phenomenon inexplicable by classical theories is the
photoelectric effect. 1n 1888, Hallwachs found that a negatively charged metal
plate could be discharged by ultraviolet light, and it was soon understood that
this results from the ejection of electrons from the surface of the metal. Ten
years later, Lenard investigated the phenomenon, obtaining results that were
incomprehensible to the theory of the time. He showed that for mono-
chromatic light of frequency v the kinetic energy of an ejected electron could
not exceed a maximum which depended linearly on v:

K.E. < hv—Ey;

h was apparently a universal constantf (~6-6x10734Js), while E,
depended on the metal being irradiated. Classically, one would have
expected that the maximum kinetic energy would increase with the incident
intensity, but this did not happen; pe)rhaps more surprisingly, for radiation
whose frequency was too low (hv < Ey) no electrons at all were ejected,
however intense the radiation.

In 1905 Einstein gave a quantum explanation of this phenomenon which
still stands today. The monochromatic beam is in this situation to be regarded
as a beam of photons each carrying the same characteristic amount of energy
hv. When a photon in the beam interacts with an electron in the metal, the
electron may be ejected with kinetic energy not greater than hv— E,, where E,
is the minimum energy required to overcome the potential “cliff” at the surface.
The photon description fits the observed effects exactly. Any classical attempt
at a description fails since it cannot allow for the discrete nature of the energy
in a monochromatic beam.

Plane-polarized light

A useful illustration which we shall use repeatedly is provided by the
properties of polarized light. Imagine a uniform monochromatic collimated
beam of light. Such a beam has definite frequency, direction, and intensity,
but is not quite completely specified ; there remains the possibility of polariza-
tion. We shall consider plane-polarization to begin with.

A beam is plane-polarized if the electric vector & in the beam is every-
where parallel to some vector a, which must itself be perpendicular to the
direction of propagation. The direction of a is conveniently specified by the
angle 6 between @ and a fixed vector a,; we shall call the corresponding
polarization P,. There is one such polarization P, for each 6 in the range
0 < 6 < &; note that P, and P, , are the same polarization, since the sense
of the vector a is not relevant.

+ Planck’s constant. Introduced by Planck (1900) for reasons from statistical
mechanics, this constant appears throughout the entire range of microscopic physics.
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One way of obtaining a beam polarized at the angle € is to pass it through
an appropriately oriented plane-polarizer (such as a Nicol prism or a Polaroid
filter). By an obvious convention we say that a plane-polarizer which produces
the polarization P, is oriented at the angle 6.

Plane-polarized photons

Phenomena like the photoelectric effect lead us to regard a beam of
P,;-polarized light as a beam of photons, and we then say that each photon in

the beam is ‘in the state P,’ (see below, p. 6). Quantum mechanics is the study
of the relations between such states.

Consider the following known experimental facts : 2 monochromatic beam
with polarization P, encounters a polarizer set at angle ¢ ; then
(1) the beam exits with polarization P, (as we already know);

1 In the text bold type will always indicate the point at which a definition of an
essential concept is given. This point need not be where the concept is first mentionar
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(2) the beam is still monochromatic, with no change in frequency ;

(3) the intensity of the beam changes by a factor cos? (6 — ¢).
Fact (2) implies that the beam consists of photons of energy hv both before and
after meeting the polarizer ; then fact (3) can only imply that the proportion of
photons surviving the polarizer is cos? (§ — ¢). This in turn suggests that we
should say for a single photon

the probdbility that a photon in state P,
survives a polarizer with orientation ¢ 3 = cos? (0—¢)
(thus then being in state P,)

Here, as always in quantum mechanics, the word probability really means
proportion, where we have a large number of identical situations in mind, e.g.
a large number of photons striking a polarizer. It should now be clear that it is
not easy to avoid the idea of indeterminacy when we wish to describe a
beam of light as a stream of photons; it is usually not possible to say with
certainty what will happen to any particular photon in the beam.

A physical theory must relate and predict the resuits of experiments. Thus
quantum mechanics must be able to deal with probabilities. We are given a
clue to the appropriate formalism by noting that

cos (8 — @) = cos 6 cos ¢ +sin O sin ¢, (1.1)

suggesting that we should associate number pairs (‘vectors’) with the polariza-
tion states

Py « (cos 8, sin 6), - P, < (cos ¢, sin ¢).

(‘Pg is represented by (cos 9, sin 8).”) The probalility may now be written in
terms of the ‘scalar product’ (eqn (1.1)) of these two vectors. This is not an
accident: in every case where quantum mechanics has been used the link,
indeed the only link, between theory and experiment is through scalar product
expressions of this kind.

Quantum mechanics therefore uses the techniques of vector algebra, along
with extensions appropriate to more complicated situations. Accounts of
these techniques are to be found in other books, and in this book we shall
merely list some ‘mathematical prerequisites’ from time to time.

Mathematical prerequisites

An n-component column vector is an ordered set of n complex components, con-
ventionally arranged as a vertical array .



The Hermitian conjugate of a column vector is a row vector, whose components are
the complex conjugates c# of those of the column vector, arranged conventionally as a
horizontal array:
¢t = (et cfsomnrcd)
(often called ‘c-dagger’).

The sam of two column vectors is obtained by adding corresponding components:

a, a,;+b,
a, (az+bz).
a, a,+b,

The sum of two row vectors is similarly defined. We may multiply a vector by a
(possibly complex) number, according to

o Acy
Cu ACy

The zero vector (either row or column) has all components zero and is usually written
0. )
The scalar product of a row vector w* and a column vector v is

Yy
v, "
.
wio=whwi o owh) o) =3 wh
: i=1
. ol

If w*v = 0, the column vectors v and w (or equivalently the row vectors v* and w*)are
orthogonal.
The value of v *v for any vector v is always positive, since

=2 lvof

i=1

and thus is a sum of positive terms. The length of the column vector v is the positive
root (v*v)}. A vector is normalized if its length is 1.

The nature of a quantum state

We are now ready to look at the basic structure of quantum mechanics.
A difficulty which we meet at the very beginning is that the ideas are unfamiliar.
W« .2 used to Newtonian mechanics where everything is predictable. For
exampie, if we have to do with the motion of a particle under the influence of a
given force, and if we are given the position and the velocity of that particle
at time t = 0, it is ‘simply’ a matter of solving the Newtonian equations of
motion to obtain the precise position (or the velocity) at any future time—or,
for thatinat'ter, anv nast time : it works both ways. (‘Simply’ in quotes, because
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there may be practical numerical difficulties in solving the equations; such
difficulties are not really relevant here.)

Our discussion of photon polarization, on the other hand, suggests that
we are wrong to demand complete’ predictability in physics. To understand
what a radical change in thinking is required, consider some ‘quantum’
system at time ¢ = 0, and imagine that we have at that time subjected it to an
observation O, so comprehensive that we have squeezed out every last drop of
information about its state that we can. It is then natural to say that it is then
in a definite state S which is specified by the information that we have extracted.
We have not, as yet, introduced anything new; after all, if we have measured
the position and velocity of a Newtonian particle (which we understand) we are
equally entitled to say that it is then in a definite state.

The major change is that even though we declare that a quantum system is
in a definite state S, a different observation O, does not necessarily yield a
definite result. Sometimes we may get the result a, say, and sometimes b.
Worse still, this same observation, when performed for a different state S',
may sometimes give the result a and sometimes b. In other words, knowing the
result of an observation cannot tell us the state that the system was in when the
observation was made ; and knowing the state of a system cannot predict with
certainty what the result of any observation will be.

In such a situation it is difficult to see how one can have a theory describing
the mechanics of a single quantum system ; in fact, no-one has ever succeeded
in producing a satisfactory one. The claims of quantum mechanics are much
more modest, however, and can be summarized as follows.

1. A thoroughly comprehensive observation O, of a system will put that
system in a definite quantum state S; the particular state S which results is
defined by the result of the observation. (Thus in one sense, the state S
is a kind of codification of the result of the observation.)

2. A further observation O,—possibly a different one and not necessarily
comprehensive—made on a quantum system in a definite state S may
produce one of a set of possible results a, , a,, ... . If there is more than one
possible result, no prediction is made about which result will occur.

3. Now imagine that we use the comprehensive observation O, to put the
system repeatedly into a definite quantum state; on those occasions
when the quantum state is S (as'checked by the result of O,), let us then
go on to make the further observation O,. Quantum mechanics pre-
dicts the proportion p, of occasions for which the result is a,, the pro-
portion p, of occasions for which the result is a,, and so on.

We may therefore say that quantum mechanics is concerned with the
statistical outcome of a fixed experimental procedure repeated many times:
its aim is to predict the values of the probabilities p,,p,, ... It achieves this
aim with the aid of an appropriate mathematical structure, which we must
now consider.
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The representation of states by state vectors

Quantum systems may be quite simple, or they may be extremely compli-
cated ; therefore the same will be true of the mathematical structures we set up
to represent them. To begin with we consider the very simplest systems:
certain generalizations will become necessary for the more complicated systems
of Chapter 4. ’

For the simplest systems, quantum mechanics asserts that each possible
physical state is to be represented by a normalized column vector (the state
vector) or (equivalently) by the Hermitian conjugate row vector

€1
C2

physical state « | : or (c},c3,...,¢cF) (Rule 1)
L‘ﬂ

with ¥ |¢,/* = 1. The components ¢, are to be allowed to be complex. How
many components are needed depends on how complicated the system is:
we have already hinted that photon polarization requires two (p. 4). Indeed,
some important systems cannot be represented by state vectors with a finite
number of components ; they will not be considered until Chapter 4.

To complete the scheme of quantum mechanics we shall need scme further
rules to link the values of the components with the results of observation (see
below), and others to provide a dynamics, i.e. equations of motion governing
the change in the components as time passes (see Chapter 3).

The physical interpretation of the formalism

Let us begin with an illustration. Consider the simple analyser consisting of
a plane-polarizer in front of a photon detector ; the detector gives a signal (‘yes’)
whenever a photon passes through the polarizer and meets the detector. An

Detector
Signal
ryes )
or
o
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observation consists in aiming a photon at the analyser and sensing a signal
(‘yes’) or the absence of a signal (‘no’). When the analyser is oriented at angle 6,
any photon in polarization state P, will certainly reach the detector and yield
a ‘yes’; as it happens, this is true for no other polarization state whatever.
(Other states, of course, may give a ‘yes’, but not with certainty ; the state P,
will give ‘yes’ with probability cos? (6 — ¢).)

It should be clear that a measurement of this kind cannot determine the
state of the incident photon. In fact, it is generally true in quantum mechanics
that we never ‘measure’ states, but physical quantities ; knowledge of the state
implies knowledge of the probabilities of all the various possible outcomes,
according to the rules now to be outlined.

To help us in this we introduce the idea of a ‘simple’ observation, whose two
possible outcomes are ‘yes’ and ‘no’, and for which there-is exactly one
state (say S) yielding ‘yes’ with certainty; let us call this observation O(S),
labelling it with the state Sin a natural way. Observations of this kind are not as
artificial as they may seem; the photon detector just described provides the
example of the ‘simple’ observation O(P,). In any case, more complicated
observations are easily expressed in terms of ‘simple’ observations (Chapter 2),
so that the idea is in no way restrictive. By the way, the ‘comprehensive’
observations mentioned earlier (p. 6) are ‘simple’ observations in this sense;
they may not be simple in any practical experimental sense!

The fundamental connection between theory and observation can now be
given. Imagine that a system in a state represented by the state vector w is
subjected to the observation O(S), where the state S is represented by the state
vector v. Then

(Rule 11)

the probability that the outcome| . w*of?
of the observation is ‘yes’ 18 wour

It is important to understand that this rule provides the only connection
between the formalism and the physics. It expresses the physical relation
between states in terms of a scalar product, and it is for this reason that quan-
tum mechanics uses the methods of linear algebra—the natural mathematical
apparatus for dealing with scalar products.

Let us see how Rules I and II work out for a plane-polarized photon.
We have already hinted (p. 4) that the state P, may be represented by

cos @
Po (sin )

Let us perform the ‘simple’ observation O(P,) on a photon in the state P,
(or, in everyday language, allow a plane-polarized photon, state Py, to fall on
the analyser described above, oriented at angle ¢). Applying Rule Il in this
case leads us to write down

or (cos®f,sin#).

w’' = (cos L ind v = ‘ ,
sin €

cos 0)
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and then to write

the probability of getting} is | (cos ¢, 5in ¢)

a signal from the detector

cos 0\ |?
sin §

= |cos ¢ cos 8 +sin ¢ sin §]?
= cos? (0 —¢).

So the rules work for a plane-polarized photon, usmg a state vector with two
components.

PROBLEMS

1. Use Rule 1I to confirm that making the observation O(S) on the state S gives ‘yes’
with certainty. (Recall that state vectors are required to be normalized.)

2. uand v are any two fixed normalized vectors, and « is a complex number.
(a) Prove that (u* +a®*v*)(u+av) > 0 for any a. (The left side is a sum of squared

moduli.)
(b) Prove that as « varies, the minimum possible value of (u™ +a‘v*)(u+av) is
1 —Ju*v|?, attained when @ = —v*u. (One route to this result is to remark that

the partial derivatives with respect to the real and imaginary parts of a must
both vanish at the minimum. There is a short cut : differentiate with respect to
a*, keeping a ‘constant’.)

(c) Deduce that 0 < |u*v/* < 1, and thus confirm that the scalar product expres-
sion in Rule Il may safely be interpreted as a probability.

3. Suppose that the state S, is represented by the vector
0|
0

9

Sk"" ’
Y

Lo/
with all components zero, except ¢, = 1. For a general state

<y

show that the probability that the observation O(S,) yields a ‘yes’ is |¢,|%. (The
components c, are for this reason often called probability amplitudes in the litera-
ture. However, ‘amplitude’ is a much overworked word, and we shall not use it.)



