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Preface

One hundred years after the discovery of the first foundations of quantum
mechanics, there are still many open and fascinating questions dealing with
the relation between quantum mechanics and classical mechanics. Everyday
life and three and a half centuries of successful application of classical me-
chanics have left us with the conviction that we can predict precisely the fate
of an individual object if we know sufficiently precisely its initial conditions
and the forces that act on it. Quantum mechanics gives us a very different
picture of reality. It states that the information that we may gather about
any object can never be as complete as in classical mechanics, and we can
only predict statistical distributions for experimental data.

Shortly before the beginning of the twentieth century, Henri Poincaré dis-
covered that even within classical mechanics the predictability of very simple
classical systems might be very poor, and for sufficiently long times prediction
might be just impossible owing to a very strong sensitivity to initial condi-
tions. Such systems were later termed “chaotic”. We know today that chaotic
behavior is far more common in nature than the regular, integrable motion
in, say. Kepler’s problem or the harmonic oscillator. It is therefore natural to
abandon the attempt to predict the fate of individual objects, for initial con-
ditions are never precisely known. By going over to an ensemble description,
as is also done in statistical mechanics. one allows space for uncertainties in
the initial conditions. Furthermore. within an ensemble description classical
mechanics uses a vocabulary that is much more similar to that of quantum
mechanics. Both then predict an evolution of the probability distributions of
observables, and we can study how the quantum mechanical evolution law
goes over into the classical one.

Nevertheless, the transition from quantum mechanics to classical mechan-
ics is still far from simple, as the classical limit is highly singular. An initial
“blob™ corresponding to a reasonably localized distribution in phase space is
rapidly torn apart by a chaotic classical dynamics, which stretches and folds
it to ever finer scales while covering rapidly the entire available phase space.
Heisenberg's uncertainty relation, on the other hand, prevents the produc-
tion of arbitrarily fine scales by quantum mechanical time evolution. And
vet another difference between the quantum mechanical world and the clas-
sical world exists: probabilities add very differently in the cases of quantum
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mechanics and classical mechanics. In quantum mechanics probability am-
plitudes that are squared to give probability distributions have to be added.
and this can give rise to quantum mechanical interference effects. In classical
mechanics we add probabilities directly and quantum mechanical interference
is absent.

It has become obvious during the last twenty years that an important
ingredient of the transition from quantum mechanics to classical mechanics
is the interaction of a system with its environment. Such a coupling leads
typically to dissipation of energy and to decoherence. While the former pro-
cess is already present in classical mechanics, and by itself leads to a washing
out, of phase space structures (although on classical scales), decoherence is
genuinely quantum mechanical and means that interference patterns are de-
stroyed. Thus, decoherence is the process that allows us to recover classical
probability theory from the quantum mechanical theory.

The relations and connections of the quantum mechanical time evolution
to the classical evolution for systems that are coupled to an environment
are the main subject of this book. The book deals mostly with systems with
large quantum numbers, i.e. a semiclassical regime. A new formalism is de-
veloped that allows us to efficiently calculate the effects of dissipation and
decoherence. It turns out that many of the concepts, such as periodic-orbit
theory, trace formulae and zeta functions, that have been introduced to deal
with the quantum mechanics of classically chaotic but isolated systems can
be extended to situations where dissipation and decoherence are important.
Furthermore, I shall deal in some detail with exceptional situations where de-
coherence is very weak in spite of a strong coupling to the environment. In the
young theory of quantum computing, such situations have gained substantial
interest in the last few years.

The present book would not have been possible without the help and
support of many people. It is my pleasure to thank Prof. Fritz Haake for giving
me the opportunity to work on this project in Essen and for his continuous
interest, countless discussions and ideas. His enthusiasm and his warm and
encouraging support made it a pleasure to work with him.

I would also like to thank Prof. Petr A. Braun, with whom 1 had the
privilege to work closely. With pleasure I think back to his visits to Essen,
and to his warm hospitality during my stay in St. Petersburg.

A big “thank you” also to Profs. Marck Ku$ and Karol Zyczkowksi. fre-
quent visitors to Essen, with whom I have enjoyed working.

During my time in Essen and at numerous conferences and workshops and
on visits, 1 had the pleasure to meet and have discussions with many physi-
cists. Special thanks are owed to Alex Altland, Tobias Brandes. Andreas
Buchleitner, Doron Cohen, Predrag Cvitanovic, David DiVincenzo, Bruno
Eckhardt, Klaus Frahm, Yan Fyodorov, Pierre Gaspard, Theo Geisel, Nico-
las Gisin, Sven Gnutzmann, Martin Gutzwiller, Peter Hanggi, Serge Haroche,
Etienne Hofstetter, Martin Janssen, Maria José-Sanchez, Stefan Kettemann,
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Roland Ketzmerick, Ilki Kim, Peter Knight, Bernhard Kramer, Wolfgang
Lange, Angus MacKinnon, Giinter Mahler, Gilles Montambaux, Michael Pas-
caud, Frédéric Piéchon, Sarben Sarkar, Riidiger Schack, Ferdinand Schmidt-
Kaler, Henning Schomerus, Petr Seba, Pragya Shukla, Uzy Smilansky, Hans-
Jiirgen Sommers, Andrew Steane, Frank Steiner, Walter Strunz, Mikhail
Titov, Imre Varga, Gabor Vattay, David Vitali, Jiirgen Vollmer, Joachim
Weber, Ulrich Weif3, Christoph Wunderlich, Hugo Zbinden, Isa Zharekeshev
and Wojciech Zurek for the enrichment they brought to my knowledge of
physics relevant to the topics of this book.

The numerical calculations were partly performed at the John von Neu-
mann Center for Computing (the former Hochleistungsrechenzentrum Jiilich)
in Jiilich. This work was supported by the Sonderforschungsbereich 237 “Un-
ordnung und grofie Fluktuationen” (DFG special research program 237, “Dis-
order and large fluctuations™).

Essen, October 2000 Danziel Braun



Springer Tracts in Modern Physics

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

High-Temperature-Superconductor Thin Films at Microwave Frequencies
By M. Hein 1999. 134 figs. XIV, 395 pages

Growth Processes and Surface Phase Equilibria in Molecular Beam Epitaxy
By N.N. Ledentsov 1999. 17 figs. VIII, 84 pages

Deposition of Diamond-Like Superhard Materials
By W. Kulisch 1999. 60 figs. X, 191 pages
Nonlinear Optics of Random Media

Fractal Composites and Metal-Dielectric Films

By V.M. Shalaev 2000. 51 figs. XII, 158 pages

Magnetic Dichroism in Core-Level Photoemission
By K. Starke 2000. 64 figs. X, 136 pages

Physics with Tau Leptons

By A. Stahl 2000. 236 figs. VIII, 315 pages

Semiclassical Theory of Mesoscopic Quantum Systems
By K. Richter 2000. 50 figs. IX, 221 pages

Electroweak Precision Tests at LEP
By W. Hollik and G. Duckeck 2000. 60 figs. VIII, 161 pages

Symmetries in Intermediate and High Energy Physics
Ed. by A. Faessler, T.S. Kosmas, and G.K. Leontaris 2000. 96 figs. XVI, 316 pages

Pattern Formation in Granular Materials
By G.H. Ristow 2000. 83 figs. XIII, 161 pages

Path Integral Quantization and Stochastic Quantization
By M. Masujima 2000. o figs. XII, 282 pages

Probing the Quantum Vacuum
Pertubative Effective Action Approach in Quantum Electrodynamics and its Application
By W. Dittrich and H. Gies 2000. 16 figs. XI, 241 pages

Photoelectric Properties and Applications of Low-Mobility Semiconductors

By R. Kénenkamp 2000. 57 figs. VIII, 100 pages

Deep Inelastic Positron-Proton Scattering in the High-Momentum-Transfer Regime of HERA
By U.F. Katz 2000. 96 figs. V1II, 237 pages

Semiconductor Cavity Quantum Electrodynamics

By Y. Yamamoto, T. Tassone, H. Cao 2000. 67 figs. VIII, 154 pages

d-d Excitations in Transition-Metal Oxides
A Spin-Polarized Electron Energy-Loss Spectroscopy (SPEELS) Study
By B. Fromme 2001. 53 figs. XII, 143 pages

High-7, Superconductors for Magnet and Energy Technology
By B. R. Lehndorff 2001. 139 figs. XII, 209 pages

Dissipative Quantum Chaos and Decoherence
By D. Braun 2001. 22 figs. XI, 132 pages



i + 3 8 ~ & a4 <

Gak Forwwd fead  Veow

Location: ‘_,!j. [http 2/ fwewew springer de /phy s/

areone clickaway
m aworld of physics mformatlon'

Come and visit Springer’s

Physics Online Library

Books

- Search the Springer website catalogue
- Subscribe to our free alerting service for new books
« Look through the book series profiles

You want to order?  Email to: orders@springer.de

Journals

- Get abstracts, ToC’s free of charge to everyone

- Use our powerful search engine LINK Search

« Subscribe to our free alerting service LINK Alert

« Read full-text articles (available only to subscribers
of the paper version of a journal)

You want to subscribe?  Email to: subscriptions@springer.de

Electronic Media

; - Get more information on our software and CD-ROMs
You have a question on

an electronic product? Email to: helpdesk-em@springer.de

-ooc--o-o-o.o.-oooo-c-.o-oon--.oo-ooooooc-oooonoooln--'.ocop‘oooo-cao---u-coo-a-.o-oooo-oo

ceescssess.@ Bookmark now:

! :jjnger.de/phys/

)

Springer - Customer Service
b 7-D-69126 Heidelberg, G
Tel: +49 6221 345200 - Fax: +49 6221 300186
~ d&p - 6437a/MNT/SF - Gha.




Contents

1. Introduction ..... ... ... .. .. 1
2. Classical Maps.........ciuiiiiiiiiiinniienneaeeannns 7
2.1 Definition and Examples ... ... .o i 7

2.2 Classical Chaos . ... e 9

2.3 Ensemble Description .. ... i 11
2.3.1 The Frobenius Perron Propagator .................. 11

2.3.2  Different Types of Classical Maps .................. 12

2.3.3 Ergodic Measure . ... 15

2.3.4  Unitarity of Classical Dynamics ...t 16

2.3.5 Spectral Properties of the Frobenius Perron Operator. 17

DA SUMIATY s 65 508 mesns tmampsme ssemsms vonmnioime imswmeins 2mi 18

3. Unitary Quantum Maps ........... .. ...t 21
3.1 What is a Unitary Quantum Nap? ......... ... .. ... ... 21

3.2 AKicked TOp oo ot 22

3.3 Quantum Chaos for Unitary Maps ... o 24

3.1 Semiclassical Treatment of Quantum Maps ................ 27
3.14.1 The Van Vleck Propagator ........................ 27

3.1.2  Gutzwiller's Trace Formula ......... ... ... .. ... 28

3.5 SUMMIATY v o0 555 6085 e 08 488w sme vamamamens s saimn v e sinn s 29

4. Dissipation in Quantum Mechanics ....................... 31
11 Generalities . . ... e 31

1.2 Superradiance Damping in Quantum Optics ........... ... 33
4.2.1 The Physics of Superradiance ........... ... ... ... 33

1.2.2  Modeling Superradiance . ............. ..o 34

4.2.3 Classical Behavior .. ... i 36

1.3 The Short-Time Propagator ........... .. ... iuieo.. 37

1.4 The Semiclassical Propagator .......... ... ... .. ... 40

1.4.1 Finite-Difference Equation................. ... .. ... 40

1.4.2 WKB Ansatz ............. . 40

4.4.3 Hamiltonian Dynamics .. ... oo 41

4.4.4 Solution of the Hamilton Jacobi Equation ........... 42



Contents

445 WKB Prefactor ........ .. .. ... 43
4.4.6 The Dissipative Van Vleck Propagator .............. 14
4.4.7 Propagation of Coherences ........................ 45
4.4.8 General Properties of the Action R ................. 47
4.4.9 Numerical Verification ............................ 47
4.4.10 Limitations of the Approach ....................... 48
A5 SUMIMATY . o oottt 49
Decoherence . .......... ... . ... 51
5.1 What is Decoherence?. ... ... .. .. ... .. ... ... ... ... 51
5.2 Symmetry and Longevity: Decoherence-Free Subspaces . . .. .. 53
5.3 Decoherence in Superradiance . ................. ... ....... 55
5.3.1 Angular-Momentum Coherent States................ 55
5.3.2 Schrodinger Cat States................. ..., 56
5.3.3 Initial Decoherence Rate .......... ... ... . ... .. .. 56
5.3.4 Antipodal Cat States ............. ... ............ Y
5.3.5  General Result at Finite Times..................... 57
5.3.6 Preparation and Measurement ..................... 58
5.3.7 General Decoherence-Free Subspaces . ............... 60
B4 SUIMINATY . o oottt et et e e e e 62
Dissipative Quantum Maps ............................... 63
6.1 Definition and General Properties ........................ 63
6.1.1 Type of Maps Considered ......................... 65
6.2 A Dissipative Kicked Top......... ..., 65
6.2.1 Classical Behavior ............. ... ... ... ... .... 66
6.2.2 Quantum Mechanical Behavior . .................... 68
6.3 Ginibre’s Ensemble .. ... ... .. .. 71
6.4 SUMIMATY . .. ..o 73
Semiclassical Analysis of Dissipative Quantum Maps. .. ... 75
7.1 Semiclassical Approximation for the Total Propagator....... 75
7.2 Spectral Properties ........... .0 i 78
7.2.1 The Trace Formula .............................. 78
7.2.2 Numerical Verification ............................ 85
7.2.3 Leading Eigenvalues .......... ... ... ... ... .. ... 88
7.2.4 Comparison with RMT Predictions . ................ 95
7.3 The Wigner Function and its Propagator .................. 100
T CONSCQUENICES 4 s swsms st sms sasms s a5 v s §ms 458 8msms £os 106
7.4.1 The Trace Formula Revisited ....................:. 106
7.4.2 The Invariant State.............. ... ... ... ....... 106
7.4.3 Expectation Values . ........ ... ... ... ... ....... 108
7.4.4 Correlation Functions .. ........... ... ... ........ 108
7.5 Trace Formulae for Expectation Values

and Correlation Functions ......................... ... ... 111



Contents X1

7.5.1 The General Strategy .. ... ..., 111
7.5.2 Cycle Expansion ........... ... ... .. ..., 112
7.5.3 Newton Formulae for Expectation Values........ Tems 114
TO SUIMIMATY « oot e e e e e 116

A. Saddle-Point Method
for a Complex Function
of Several AFEUMICHES oo vooscosvvinssmsasims s snins insiss 119

B. The Determinant of a Tridiagonal,
Periodically Continued Matrix............................ 121

C. Partial Classical Maps
and Stability Matrices

for the Dissipative Kicked Top............................ 123
C.1 Rotation by an Angle 3 About the y Axis ................. 123
C.2 Torsion About the z AXiS. .. ... .o 124
C.3 Dissipation ... 124
References . ....... ... .. 125

Index . ... 131



1. Introduction

The notion of “chaos™ emerged in classical physics about a century ago with
the pioneering work of Poincaré. After two and a half centuries of application
of Newton's laws to more and more complicated astronomical problems, he
was privileged to discover that even in very simple systems extremely com-
plicated and unstable forms of motion are possible [1]. It seems that this first
appeared a curiosity to his contemporaries. Moreover, quantum mechanics
and relativistic mechanics were soon to be discovered and distracted most of
the attention from classical problems. In any case, classical chaos interested
mostly only mathematicians. from G. Birkhoff in the 1920s to Kolmogorov
and his coworkers in the 1950s. Only Einstein, as early as 1917, i.e. even
before Schrodinger’s equation was invented, clearly saw that chaos in classi-
cal mechanics also posed a problem in quantum mechanics [2]. The rest of
the world started to realize the importance of chaos only when computers
allowed us to simulate simple physical systems. It then became obvious that
integrable systems, with their predictable dynamics, that had been the back-
bone of physics for by then three centuries were an exception. Almost always
there are at least some regions in phase space where the dynamics becomes
irregular and very sensitive to the slightest changes in the initial conditions.
The in principle perfect predictability of classical systems over arbitrary time
intervals given a precise knowledge of all initial positions and momenta of all
particles involved is entirely useless for such “chaotic” systems, as initial
conditions are never precisely known.

The understanding of quantum mechanics naturally developed first of all
with the solution of the same integrable systems known from classical me-
chanics. such as the hydrogen atom (as a variant of Kepler’s problem) or the
harmonic oscillator. With the growing conviction that integrable systems are
a rare exception. it became natural to ask how the quantum mechanical be-
havior of systems whose classical counterpart is chaotic might look. Research
in this direction was pioneered by Gutzwiller. In the early 1970s he published
a “trace formula™ which allows one to calculate the spectral density of chaotic
systems [3, 4]. That work was extended later by various researchers to other
quantities. such as transition matrix elements and correlation functions of
observables. All of these theories are “semiclassical™ theories. They make use
of classical information. in particular classical periodic orbits. their actions
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and their stabilities, in order to express quantum mechanical quantities. And
they are (usually first-order) asymptotic expansions in i divided by a typical
action.

The true era of quantum chaos started, however, with the discovery by
Bohigas and Giannoni [5] and Berry [6] and their coworkers in the carly 1980s
that the quantum energy spectra of classically chaotic systems show univer-
sal spectral correlations, namely correlations that are described by random-
matrix theory (RMT). The latter theory. developed by Wigner. Dyson. NMehta
and others starting from the 1950s. assumes that the Hamilton operator of a
complex system can be well represented by a random-matrix restricted only
by general symmetry requirements. Since there are no physical parameters
in the theory (other than the mean level density. which. however, has to be
rescaled to unity for any physical system before it can be compared with
RMT), the predicted spectral correlations are completely universal. Over the
vears, overwhelming experimental and numerical evidence has been accumu-
lated for this so called “random-matrix conjecture” — but still no definitive
proof is known.

With the help of Gutzwiller's semiclassical theory, Berry has shown that
the spectral form factor (i.c. the Fourier transform of the autocorrelation
function of spectral density Auctuations) should agree with the RMT predic-
tion, at least for small times [7]. How small these times should be is arguable,
but at most they can be the so-called Heisenberg time, h divided by the mean
level spacing at the relevant energy. From the derivation itself, one would ex-
pect a much earlier breakdown, namely after the “Ehrenfest time” of order
h='In heg, in which h means the Lyapunov exponent and heg an “effective”
h. At that time the average distance between periodic orbits becomes so small
that the saddle-point approximation underlying Gutzwiller’s trace formula is
expected to become unreliable.

In his derivation Berry uses a “diagonal approximation™ which is effec-
tively a classical approximation: the fluctuations of the density of states are
expressed by Gutzwiller’s trace formula as a sum over periodic orbits. Each
orbit contributes a complex number with a phase given by the action of the
orbit in units of A. In the spectral form factor the product of two such sums
enters, and in the diagonal approximation only the “diagonal™ terms are kept.
with the result that the corresponding phases cancel. The off-diagonal terms
are assumed to vanish if an average over a small energy window is taken.
since they oscillate rapidly. For times larger than the Heisenberg time the
off-diagonal terms cannot be neglected. and so far it has only been possible
to extract the long-time behavior of the form factor approximately and with
additional assumptions by bootstrap methods that use the unitarity of the
time evolution, relating the long-time behavior to the short-time behavior

The question arose as to whether semiclassical methods might work better
if a small amount of dissipation was present. Dissipation of energy introduces.
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almost unavoidably, decoherence, i.e. it destroys quantum mechanical inter-
ference effects. Therefore dissipative systems are expected to behave more
classically from the very beginning, and so one might indeed expect an im-
provement. To answer this question was a main motivation for the present
work. As for most simple questions, the answer is not simple, though: in some
aspects the semiclassical theories do work better, in others they do not.

First of all. there are aspects of the semiclassical theory that seem to
work as well with dissipation as without. One of them is the existence of a
Van Vleck propagator, an approximation of the exact quantum propagator
to first order in the effective h. Gutzwiller's theory is based on it in the case
without dissipation. And a corresponding semiclassical approximation can
be obtained for a pure relaxation process by means of the well-known WKB
approximation.

Things become more complicated because of the fact that a density ma-
trix, not a wave function, should be propagated if dissipation of energy is
included (alternatively, one might resort to a quantum state diffusion ap-
proach, as was done numerically in [9], but then one has to average over
many runs). If the wave function lives in a d-dimensional Hilbert space, the
density matrix has d? elements, and its propagator P is a d? x d? matrix,
instead of a d x d matrix as for the propagator F of the wave function. This
implies that many more traces (i.e. traces of powers of P) are needed if one
wants to calculate all the eigenvalues of P.

Furthermore, the eigenvalues of P move into the unit circle when dissipa-
tion is turned on. For arbitrary small dissipation and small enough effective
h their density increases exponentially towards the center of the unit circle.
This has the unpleasant consequence that numerical routines that reliably re-
cover eigenvalues of F' on the unit circle from the traces of F become highly
unstable. They fail even for rather modest dimensions, even if the numeri-
cally “exact™ traces are supplied - not to mention semiclassically calculated
ones that are approximated to lowest order in the effective A. This must be
contrasted with the case of energy-conserving systems, where it has been pos-
sible to calculate very many energy levels. e.g. for the helium atom [10] or
for hydrogen in strong external electric and magnetic fields [11, 12], or even
entire spectra for small Hilbert space dimensions [13].

But dissipation of energy does improve the status of semiclassical theories
in various other respects. First of all, the diagonal approximation, which is
not very well controlled for unitary time evolutions, can be rigorously derived
if a small amount of dissipation is present. As a result one obtains an entirely
classical trace formula, namely the traces of the Frobenius-Perron operator
that propagates phase space density for the corresponding classical system.
Periodic orbits of a dissipative classical map are now the decisive ingredients,
and there is a much richer zoo of them compared with nondissipative systems.
Fixed points can now be point attractors or repellers, and the overall phase
space structure is usually a strange attractor. The traces are entirely real,
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and no problems with rapidly oscillating terms arise, nor are Maslov indices
needed. The absence of the latter in the classical trace formula cannot be
appreciated enough, as their calculation can in practice be rather difficult.
The ignorance of the Maslov phases seems to have prevented, for example, a
semiclassical solution of the helium atom for more than 70 years, in spite of
heroic efforts by many of the founding fathers of quantum mechanics before
this was done correctly by Wintgen et al. [10] (see the historical remarks in
14]).

Despite the numerical difficulties in the calculation of eigenvalues, the
semiclassically obtained traces can be used to reliably obtain the leading
eigenvalues, i.e. the eigenvalues with the largest absolute values of the quan-
tum mechanical propagator, from just a few classical periodic orbits. These
eigenvalues become independent of the effective h if the latter is small enough.
and they converge to the leading complex eigenvalues of the Frobenius—Perron
operator P, the so-called Ruelle resonances. All time-dependent expectation
values and correlation functions carry the signature of these resoncances. as
well as the decaying traces of P themselves. So a little bit of dissipation (an
“amount” that vanishes in the classical limit is enough, as we shall see) en-
sures that the classical Ruelle resonances determine the quantum mechanical
behavior.

As for the range of validity of the semiclassical results, there seems to be
no improvement at first glance. The trace formula for the dissipative system
is valid at most up to the Heisenberg time of the dissipation-free system, but
is eventually limited to the Ehrenfest time for the same technical reasons as
for the periodic-orbit theory for nondissipative systems. But this is in fact
an enormous improvement: for small values of the effective i all correlation
functions, traces etc. have long ago decayed to their stationary values before
the Heisenberg time (which typically increases with decreasing effective h) or.
for exponentially small effective h, even before the Ehrenfest time is reached.
just because the decay happens on the classical and therefore h-independent
time-scales set by the Ruelle resonances. Only exponentially small corrections
to the stationary value are left at the Heisenberg time. One may therefore say
that the semiclassical analysis is valid over the entire relevant time regime
something one cannot so easily claim for unitary time evolutions.

The important aspect of dissipation that makes quantum mechanical sys-
tems look more classical is not dissipation of energy itself, but decoherence.
It was long believed that decoherence is an inevitable fact if a system cou-
ples to its environment. In particular, it typically restricts the existence of
superpositions of macroscopically distinct states, so-called Schrodinger cats,
to extremely small times. That is one of the main reasons why these beasts
are never observed! However, in the course of our investigations of dissipa-
tive quantum maps we have found that exceptions are possible. If the system
couples to the environment in such a way that different states acquire exactly
the same time-dependent phase factor owing to a symmetry in the coupling



