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Preface

The success of any control system depends on the precision of the model (non-
linear or linear) of the plant to be controlled. This model can be obtained us-
ing physical laws or identification techniques. Practicing control engineers can
use models to synthesize the appropriate controller to guarantee the required
performances.

For the nonlinear case, the techniques are few and in general hard to ap-
ply. However, if we linearize the nonlinear model to get a linear one in the
state-space representation, for instance, we can find in the literature many
techniques that can be used to get the controller that guarantees the desired
performances. There are now many controllers that we can design for linear
systems, such as the famous PID (proportional, integral, and derivative) con-
troller, the 7% controller, the J#%, controller, the state feedback controller, the
output feedback controller, and the observer-based output feedback controller.
The linear model we will design for our dynamical system will be locally valid
and, to prevent performance degradations, uncertainties will be introduced to
describe the neglected dynamics or any other phenomena, such as aging.

In the literature we can find different types of uncertainties, among them
the norm bounded, the polytopic, and the linear fractional transformation.
Nowadays, there are interesting results for the analysis and design of the class
of linear systems with or without uncertainties. We are also able to control
systems with some special nonlinearities, like saturation, using different types
of controllers such as the state feedback controller and the output feedback
controller. The last two decades we have brought new control design tools that
can be used to design control systems that meet the required specifications.

In practical systems, the state vector is often not available for feedback
for practical reasons such as, the nonavailability of the appropriate sensor
to measure the components of the state vector or limitations in the budget.
Therefore the design of an appropriate filter is required to estimate the state
vector that can be used for control purposes. Many techniques can be used to
estimate the state vector, including 7% filtering and %, filtering.
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In practice, some industrial systems, such as those with abrupt changes
in their dynamics, can not be appropriately described by the famous linear
time-invariant state-space representation. Such systems can be adequately
described by the class of stochastic switching systems called piecewise deter-
ministic systems or jump systems, which have two components in the state
vector. The first component of this state vector takes values in R™ and evolves
continuously in time, it represents the classical state vector generally used in
modern control theory. The second takes values in a finite set and switches
in a random manner between the finite number of states. This switching is
represented by a continuous-time Markov process taking values in a finite
space. The state vector of the class of piecewise deterministic systems is usu-
ally denoted by (x(t),r(¢)). This class of systems has been successfully used
to model different practical systems such as manufacturing systems, commu-
nications systems, aerospace systems, power systems, and economics systems.

This book gives up-to-date approaches for the analysis and design of con-
trol systems for the class of piecewise deterministic systems with or without
uncertainties in the system matrices and/or in the transition probability rate
matrix. This book can be used as a textbook for graduate-level engineer-
ing courses or as a reference for practicing control engineers and researchers
in control engineering. Prerequisites to this book are elementary courses on
mathematics, matrix theory, probability, optimization techniques, and control
system theory.

We are deeply indebted to our colleagues P. Shi, V. Dragan, S. Al-Amer,
A. Benzaouia, H. Liu and O. L. V. Costa for reading the manuscript, in full
or in part, and making corrections and suggestions. We would also like to
thank students J. Raouf and V. Remillard for their help in solving some of
the examples in the book.

The draft of this book was completed in April 2004. We added new results
that are related to the topics covered by this book as we became aware of them
through journals and conference proceedings. However, because of the rapid
developments of the subjects, it is possible that we inadvertently omitted some
results and references. We apologize to any author or reader who feels that
we have not given credit where it is due.

El-Kébir Boukas
Montréal, Canada
April 25th, 2005
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1

Introduction

This chapter introduces the class of stochastic switching systems we discuss
in this book by giving the motivation for studying it. After giving some prac-
tical systems, it also defines the problems we deal with. The contents of this
book can be viewed as an extension of the class of linear time-invariant sys-
tems studied extensively in the last few decades. As will be shown by some
examples, this class of systems is more general since it allows the modeling
of systems with some abrupt changes in the state equation that cannot be
described using the class of linear time-invariant systems. In this volume we
concentrate mainly on the linear case, which has been extensively studied and
reported in the literature. References [52, 12, 45, 51] and the references therein
are particularly noted. But we would like to advise the reader that nonlinear
models have also been introduced; we again refer the reader to [12, 45, 52]
and the references therein.

1.1 Overview

Linear time-invariant systems have been and continue to be the engine of con-
trol theory development. They have been successfully used to model different
industrial systems. Most running industrial plants are designed based on the
theory of such a class of systems.

Systems with nonlinear behavior are generally linearized around an op-
erating point; the theory of linear systems is then used for the analysis and
design. Sometimes, when the nonlinearities are critical, it is preferable to use
a nonlinear model for the analysis and design.

Nowadays there are interesting results on such a class of linear systems
that can be used to analyze and design control systems. Among the problems
that have been successfully solved are the stability problem, the stabilization
problem, the filtering problem, and their robustness. Controllers such as the
state feedback and the dynamic output feedback (or the special observer-based
output control) are usually used in the stabilization problems. Various design
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approaches that use the algebraic Riccati equation (ARE), linear matrix in-
equalities (LMIs), among others, have been developed. For more details on
these results, we refer the reader to [31, 41, 59, 66, 12| and the references
therein.

In practice, some industrial systems cannot be represented by the class
of linear time-invariant model since the behavior of the state equation of
these systems is random with some special features. As examples we mention
those with abrupt changes and breakdowns of components. Such classes of
dynamical systems can be adequately described by the class of stochastic
switching systems or the class of piecewise deterministic systems, which is the
subject of this book.

If we restrict ourselves to the continuous-time version, this class of systems
was introduced by Krasovskii and Lidskii [48]. These two authors built the
formalism of this class of systems and studied the optimal control problem.
In 1969, Sworder [60] studied the jump linear regulator. In 1971, Wonham
[63] extended the formalism of the class of systems to include Gaussian noise
in the state equation and studied the stability problem and the jump linear
quadratic optimization problem. In 1990, Mariton summarized the established
results, including his results and those of other researchers in his book [52]. In
1990, Ji and Chizeck [44] studied the controllability, observability, stability,
and stabilizability problems. They also considered the jump linear regulator
by developing the coupled set of Riccati equations. In 1993 de Souza and
Fragoso [33] studied the 5, control problem. In 1995, Boukas [9] studied the
robust stability of this class of systems. In all these contributions, the results
are stated in the form of Riccati equations for the optimization problem or
Lyapunov equations for the stability problem.

In the last decade, with the introduction of LMIs in control theory, we
have seen the use of this technique for some results on the class of piecewise
deterministic systems. Most of the problems like stability, stabilization, 5,
control, and filtering. have been tackled and LMI results have been reported
in the literature.

Among the authors who contributed to the stability problem and/or its
robustness are Wonham [63], Ji and Chizeck [44], Feng et al. [40], Boukas [9],
Dragan and Morozan [34, 35, Shi et al. [57], Benjelloun and Boukas [6], Boukas
and Liu [14, 11, 13, 10], Boukas and Shi [16] , Boukas and Yang (20, 19], Costa
and Boukas [25], Costa and Fragoso (28, 27], and Kats and Martynyuk [45].
For more details on the recent review of the literature on this topic, we refer
the reader to Boukas and Liu [12], Kats and Martynyuk [45], Mahmoud and
Shi [51], and the references therein. The existing results are either in the form
of Lyapunov equations or LMIs. The stabilization problem has also attracted
many researchers and interesting results have been reported in the literature:
Ji and Chizeck [44], Benjelloun et al. (8], Boukas and Liu [13, 15, 11], Boukas et
al. [18], Cao and Lam [22], Shi and Boukas [56], de Souza and Fragoso 33|, Ait-
Rami and El-Ghaoui [1], Bao et al. [5], Dragan and Morozan [34, 35, Ezzine
and Karvaoglu [39], Costa et al. [26]. For more details, we refer the reader to



1.2 State-Space Representation 3

Boukas and Liu [12] and Mahmoud and Shi [51] and the references therein.
Among the stabilization techniques that were studied are the state feedback
stabilization, output feedback stabilization, %, state feedback stabilization,
and %, output feedback stabilization. Among the authors who tackled the
state feedback stabilization are Ji and Chizeck [44], Ait-Rami and El-Ghaoui
(1], Bao et al. [5], Benjelloun et al. [8], Boukas and Liu [15, 11], Boukas et al.
[18], Costa and Boukas [25], Dragan and Morozan (34, 35], and the references
therein. For the %, stabilization we quote the work of Aliyu and Boukas
[2, 3], Benjelloun et al. [7], Boukas and Liu (10, 13, 14], Boukas and Shi [17],
Cao and Lam [22, 23|, Cao et al. [24], Costa and Marques [30], Dragan et
al. [36], and the references therein. The filtering problem has been studied by
Boukas and Liu [11], Costa and Guerra [29], Dufour and Bertrand [37, 38|,
Liu et al. [50], Shi et al. [58], Wang et al. [62], Xu et al. [65], and the references
therein.

Manufacturing systems, power systems, communications systems, and
aerospace systems are some applications in which this class of systems has
been used successfully to model industrial plants. In manufacturing systems,
for instance, piecewise deterministic systems were used to model production
planning and/or maintenance planning. Olsder and Suri [54] were the first
to use the formalism in manufacturing systems and studied the production
planning with failure-prone machines. After 1980, the model was extended by
many authors and other optimization problems were considered. Among the
authors who contributed to the field are Gershwin and his coauthors, Zhang
and his coauthors, and Boukas and his coauthors. The books of Gershwin
[42] and Sethi and Zhang [55] and the references therein summarize most of
the contributions in this area up to 1994. In this direction of research, most
of the authors are interested by developing production and/or maintenance
planning. Their methodology, used to develop the production and/or main-
tenance policies is, in general, dynamic programming and some computation
tools.

1.2 State-Space Representation
Mathematically a dynamical system can be interpreted as an operator that
maps the inputs to outputs. More specifically, if the system represents an

industrial plant P that has as inputs u(t) and w(t) and outputs y(¢) and z(t),
the relationship between these inputs and outputs is given by the following

equation:
6] =) .

The vectors y(t) and z(t) are referred to, respectively, as the measured
output and the controlled output. More often, the measured output y(¢) is
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used to design a control law u(.) that, maps this output to an action that will
give to the closed loop system the desired behavior for the controlled output
2(t), despite the presence of exogenous input w(t). Mathematically, this is
represented by

u(t) = K(y(t)). (1.2)
z(t) <% w(t)
1)
y(t) < u(t)
—l K

Fig. 1.1. Feedback system block diagram.

Control engineers often represent this operator when controlled in a closed
loop by block diagram as illustrated in Figure 1.1. The inputs and the outputs
are almost time varying and are linked by the following dynamics:

T(t) = f(:T(t), “’(t)v w(t)),
(t) = gla(t), u(t)), (13)
2(t) = h(x(t), u(t)),

where z(t) € R™; u(t) € R™; y(t) € RP, z(t) € R, and w(t) € R® represent,
respectively, the state vector, input vector, measured output vector, controlled
output of the system at time ¢, and exogenous input that has to satisfy some
conditions as it will be presented further, f(.), g(.), and h(.) are given smooth
vector-valued functions.

Remark 1. In (1.3) the functions f(.), g(.), and h(.) are in general nonlinear in
their arguments. The first equation is a differential equation that is referred to
as the state equation and the second and the third are pure algebraic equations
that represent, respectively, the output equations for y(¢) and z(t).

This nonlinear model can always be linearized around the equilibrium
point (0,0), which gives

x(t) = Ax(t) + Bu(t) + Byw(t),
y(t) = C x(t) + Dyu(t), (1.4)
(t) = Cox(t) + D2u(t),

™
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where A, B, By, Cy, Dy, C;, and D, are appropriate constant matrices with
appropriate dimensions.

In general, this linearized model will never represent adequately the non-
linear dynamical system. The following model is used to take care of the
uncertainties that may represent the neglected dynamics, for instance, and
the effect of external random disturbances:

da(t) = [A+ AA(t)] x(t)dt + [B + AB(t)] u(t)dt

+Bywdt + Wiz(t)dw(t),
y(t) = [Cy + AC, (1) x(t) + [D, + ADy(t)] u(t) + Waw(t),
2(t) = [Cs + AC.(t)] x(t) + [D. + AD.(t)] u(t),

(1.5)

where the matrices A, B, B,,, Cy, D,, C,, and D, keep the same meaning;
as before; AA(t), AB(t), ACy(t), AD,(t), AC.(t), and AD.,(t) represent,
respectively, the uncertainties in the matrices A, B, Cy, Dy, C., and D,; W,
and W, are given matrices with appropriate dimensions; w(t) and w(t) are

external disturbances that have some properties to be discussed later in this
book.

Sometimes systems cannot be put in the previous form for physical reasons.
These systems are referred to as singular systems. The state equation of such
a class of systems is given by the following:

Edux(t) = Az(t)dt + Bu(t)dt + By,w(t)dt
+Wyz(t)dw(t),

y(t) = Cya(t) + Dyu(t) + Wow(t),

2(t) = CLz(t) + D u(t),

(1.6)

where the matrices A, B, By, Cy, Dy, C;, D,, Wy, and W, keep the same
meaning as before and F is singular matrix that has a rank equal to ng, which
is less than n (the dimension of the system).

The uncertain model is given in a similar way to the regular one as follows:

Eda(t) = [A + AA(t)] z(t)dt + [B + AB(t)] u(t)dt
+Byw(t)dt + Wyz(t)dw(t),

y(t) = [Cy + ACy(t)] z(t) + [Dy + ADy(t)] u(t) + Waw(2),

2(t) = [Cs + AC.(t)] z(t) + [D. + AD(£)] u(t),

(1.7)

where the different components keep the same meaning as before.

The models (1.4)-(1.7) have been extensively used to describe different
type of systems. In the literature, we can find many references that deal
with problems like stability, stabilizability, %, control, filtering, and their
robustness. For more information on these topics, we refer the reader to
[31, 41, 59, 66, 12] and the references therein. Unfortunately these state equa-
tions cannot represent adequately some systems, such as those with abrupt
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changes. In the next section we will present a model that generalizes this one
and that appropriately models the behavior of systems with breakdowns and
abrupt changes in their dynamics.

1.3 Stochastic Switching Systems

Let us consider a simple system with the following dynamics:
(t) = a(t)x(t) + bu(t), z(0) = xo, (1.8)

where z(t) € R, u(t) € R, b is a given constant, and a(t) is a Markov process
that switches between two values a; and ap with the following transition rates

matrix:
[ 4 j|’
q q

where p and q are positive scalars.

The switches between the two modes are instantaneous and they occur
randomly. Based on probability theory, we can find the steady-state probabil-
ities that give how long the process a(t) will spend in mode #1 and in mode
#2, respectively. These two probabilities can be computed using the following
relations:

(1 ] ["’ P]:o,

q —q
T + Mo = 1.

The resolution of these equations gives

m=—,
P+q
L P
p+q

When time t evolves, the state equation of the system will switch in random
between the following two dynamics:

z(t) = a1z(t) + bu(t),
(t) = axx(t) + bu(t).

This simple system belongs to the class of stochastic switching systems or
piecewise deterministic systems. This class of systems is more general since it
can be used to model practical systems with special features like breakdowns
or abrupt changes in the parameters.

The question now is how to handle, for instance, the stability of such a
system. Also, when the system with some appropriate scalars a,, ag, p, and ¢
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is unstable, how can we design the appropriate controller that stochastically
stabilizes the system? We can continue our list of problems until it is clear
that the theory of LTI systems does not apply and some extensions are needed
to handle the new problems raised.

Since the behavior of the system is stochastic, all the concepts should be
stochastic. For the stability problem, the concept has been extended and two
approaches are available. The first approach is due to Gihman and Skorohod
[43]. The second one is due to Kushner [49] and is a direct extension of the
Lyapunov approach that we will use extensively in the rest of this volume.
Kushner’s approach generalizes the Lyapunov approach to handle the stability
of the class of systems we are dealing with here.

The class of piecewise deterministic systems is a switching class of sys-
tems that has two components in the state vector. The first component takes
values in R", evolves continuously in time, and represents the classical state
vector that is usually used in the modern control theory. The second one
takes values in a finite set and switches in a random manner between the
finite number of states. This component is represented by a continuous-time
Markov process. Usually the state vector of the class of piecewise determin-
istic systems is denoted by (z(t),r(t)). The evolution of this class of systems
in time is comprised of two state equations, the switching and the continuous
state equation described below.

e Switching: Let ¥ = {1,2,--- , N} be an index set. Let {r(¢),t > 0} be a
continuous-time Markov process with right continuous trajectories taking
values in . with the following stationary transition probabilities:

)\1]ll+0(h)- ) 75],

. (1.9)
1+ Aiih + o(h), otherwise,

Plr(t+h) = jir(t) = i] = {

where h > 0; limy,_,q 5%52 = 0; and \;; > 0 is the transition probability
rate from the mode i to the mode j at time ¢ and A\;; = — IZV: Nz
Jj=1,
e Continuous state equation: 7
(dz(t) = A(r(t),t)x(t)dt + B(r(t), t)u(t)dt + By (r(t))w(t)dt
+Wi(r(t))z(t)dw(t), ©(0) = o,
y(t) = [Cy(r(1) + AC, (r(t), 1) (2)
+ [Dy(r(t)) + ADy(r(t), t)] u(t) + Wa(r(t))w(t),
2(t) = [C:(r(t)) + AC:(r(2), )] (2)
| + [D=(r(t)) + AD:(r(t), )] u(t),

(1.10)

where x(t) € R" is the state vector at time t; u(t) € RP is the control at
time t; w(t) € R™ is an arbitrary external disturbance with norm-bounded
energy or bounded average power; w(t) € R is a standard Wiener process



