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Preface

Statistics is the study of the collection, analysis, interpretation, presentation, and
organization of data. A conceptual approach, built around common issues and
problems rather than statistical techniques, allows to understand the conceptual
nature of statistical procedures and to focus more on cases and examples of analy-
sis. This book contains nine chapters. The purpose of first chapter is to introduce
a new measure of complexity we call statistic complexity that is not only different
to all other complexity measures introduced so far, but also connects directly to
statistics, specifically, to statistical inference. Second chapter describe about statis-
tics-it’s utility or risks. The L-moments and TL-moments as an alternative tool of
statistical data analysis has been presented in third chapter. Fourth chapter deals
with asymptotic analysis for U-statistics and its application to Von Mises statis-
tics. The aim of fifth chapter is to discuss the minimum description length meth-
ods in Bayesian model selection. The distribution of the concentration ratio for
samples from a uniform population has been described in sixth chapter. Seventh
chapter gives the details on statistics of complex eigen-values in friction-induced
vibration. Eight chapter focuses on asymptotic independence of three statistics of
maximal segmental scores. Statistical foundation of empirical isotherms has been
outlined in the last chapter.
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Chapter 1

STATISTIC COMPLEXITY:
COMBINING KOLMOGOROV
COMPLEXITY WITH AN
ENSEMBLE APPROACH

Frank Emmert-Streib

Computational Biology and Machine Learning, Center for Cancer Research and
Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen’s
University Belfast, Belfast, United Kingdom

ABSTRACT

The evaluation of the complexity of an observed object is an old but
outstanding problem. In this paper we are tying on this problem
introducing a measure called statistic complexity.

INTRODUCTION

Complex systems is the study of interactions of simple building
blocks that result in a collective behavior or properties absent in the
elementary components of the system itself. Due to the fact that this
problem does not fit into one of the traditional research fields, it is
connected to various of these, for instance physics, biology, chemistry
or econometrics [1]-[5]. Many measures, properties or characteristics
of a multitude of different complex systems from these fields has
been studied to date [6]-[8], however, the complexity of an object
may have received the most attention. This property of complex
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systems has fascinated generations of scientists [9]-[11]trying to
quantify such a notation. Very coarsely speaking, an object is said to
be ‘complex’ when it does not match patterns regarded as simple, as Loépez-
Ruiz et al. [12] describe it in their article. Over the last decades, many
approaches have been suggested to define the complexity of an
object quantitatively [9], [11], [13]-[19]. An intrinsic problem with
such a measure is that there are various ways to perceive and, hence,
characterize complexity leading to complementing complexity
measures [20]. For example, Kolmogorov complexity [9], [11],[21] is
based on algorithmic information theory considering objects
as individual symbol strings, whereas the measures -effective
measure complexity (EMC) [17], excess entropy [22],predictive
information [23] or thermodynamic depth [18] relate objects to
random variables and are ensemble based. Interestingly, despite
considerable differences among all these complexity measures
M they all have in common that they assign a complexity value to
each individual object x’ under consideration, Cv(X’). In this paper
we will assume that x’ corresponds to a string sequence of a certain
length and its components assume values from a certain domain,
e.g., A={0. 1} or A=[0. 1] 1t is of importance to note that there is
a conceptually different measure recently introduced by Vitanyi et
al. that evaluates the complexity distance among two objects
x" and x" instead of their absolute values. This measure is called
the normalized compression distance (NCD) [24], NCD(X'. x”) and is
based on Kolmogorov complexity[10].

The purpose of this paper is to introduce a new measure of
complexity we call statistic complexity that is not only different to
all other complexity measures introduced so far, but also connects
directly to statistics, specifically, to statistical inference [25], [26].
More precisely, we introduce a complexity measure with the
following properties. First, the measure is bivariate comparing two
objects, corresponding to pattern generating processes, on the basis
of thenormalized compression distance with each other. Second, this
measure provides the quantification of an error that could have
encountered by comparing samples of finite size from the underlying
processes. Hence, the statistic complexity provides a statistical
quantification of the statement ‘X is similarly complex as Y.

This paper is organized as follows. In the next section we
describe the general problem in more detail and introduce our
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complexity measure. Then we present numerical results and provide
a discussion. We finish with conclusions and an outlook.

METHOD

Currently, a commonly acknowledged, rigorous mathematical
definition of the complexity of an object is not available. Instead,
when complexity measures are suggested they are normally assessed
by their behavior with respect to three qualitative patterns, namely
simple, random (chaotic) and complex patterns. Qualitatively, a
complexity measure is considered good if: (1) the complexity of simple
and random objects is less than the complexity value of complex
objects [17], (2) the complexity of an object does not change if the
system size changes. For example, Kolmogorov complexity has the
desireable property to remain unchanged if the system size doubles,
i.e., Cx(x)=Cx(xX), however, it cannot distinguish random from
complex pattern because in both cases the compressibility of an
object is low resulting in high values of Cx. We want to add a third
property to the above criteria: (3) A complexity measure should
quantify the uncertainty of the complexity value. As motivation for
this property we just want to mention that there is a crucial difference
between an observed object X’ and its generating process X [23]. If
the complexity of X should be assessed, based on the observation
x' only, this assessment may be erroneous. This error may stem
from the limited (finite) size of observations. Also, the possibility of
measurement errors would be another source derogating the ability
of an error-free assessment. For this reason, the major objective of
this article is to introduce a complexity measure possessing all three
properties listed above that assesses the complexity classes of the
underlying processes instead of individual objects.

We start by pointing out that criteria (1) provides a relative
statement connecting different objects. That means the complexity
of an object is always related to the complexity of another
object [20] leading to relative statements like “.X is similarly complex
as Y’. Hence, a numerical value C(X) without knowledge of any
other complexity value for other objects has no meaning at all. For
reasons of mathematical rigor, we propose to include this implicit
reference point into a proper definition of complexity. This implies
that a fundamental complexity measure needs to be bivariate,
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C(X. Y), instead of univariate comparing two processes X and Y.
As a side note, we remark that all complexity measures suggested
so far we are aware of are univariate measures [13], [14], [16]-
[18], [22], [23] with respect to the context set above, except for the
normalized compression distance (NCD) [24], [27]. However, a
practical problem of the NCD is that Kolmogorov complexity,
on which it is based, is not computable but only upper semi-
computable [27]. Li et al. introduced in [27] a normalized and

universal metric called normalizedinformation distance (NID) which

NCD(x,y)= SC) —min{ C(x), Cly)}

can be approximated by, max{C(x). C(»)} @)
the normalized compression distance [27]. Here, C(X) denotes the
compression size of string x and C(X¥) the compression size of
the concatenated stings x and ). Practically, the quantities C() are
obtained by compressors like gzip or bzip2, see [28], [29] for details.

Criteria (3) of a complexity measure stated above acknowledges
the fact thatan assessment of an object>s complexity cannot be without
uncertainty or error in case only finite information about this object
is available. That means, for a complexity measure to be applicable to
real objects (rather than pure mathematical ones) it has to be statistic
in order to deal appropriately with incomplete information. Based
on these considerations, the statistic complexity measure we suggest
is defined by the following procedure visualized in Fig. 1:

+ Estimate the empirical distribution function fx.x (We
indicate estimated entities by Fand refer to the ensemble by
F.) of the normalized compression distance from #?isamples,
S x={x=NCD (¥, X)X X"~ XHL\ grom obiects v and
x" of size m generated by process X (Here x ~ X means that
x is generated (or drawn) from process (distribution) .X.).

« Estimate the empirical distribution function Fx.r of
th"e normalized compression distanc?' from 12 samples,
X.y= {,l',‘ =NCD (_.\' . Jl\' ~X, Yo~ Y }": L from ObjECtS
x'and )’ of size m from two different processes, X and Y.
e Determine 7 = SUP|Fy x(x)—=Fx y(x) and 2= Prob(T <1)

. s (S"} LSV LY. Y. mon .m)::
e Define, ~S\7Xx Xyl 112 )2 =P

complexity

as statistic
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This procedure corresponds to a two-sided, two-sample
Kolmogorov-Smirnov (KS) test [30],[31] based on the normalized
compression distance [24], [27] obtaining distances among observed
objects. The statistic complexilt;'l/ corresponds to the p-value of the
underlying null hypotheses, o : Fx.x =Fx.y, and, hence, assumes
values in [0:1]. The null hypothesis is a statement about the null
distribution of the test statistic 7 = SUPFx.x(¥)=Fy.¥(¥) and
because the distribution functions are based on the normalized
compression distances among objects x’ and X", drawn from the
processes X and Y, this leads to a statement about the distribution
of normalized compression distances. Hence, verbally, o can be
phrased as ‘in average, the compression distance of objects from
X to objects from Y equals the compression distance of objects
only taken from X". It is important to emphasize that this equality
holds in average and, thus needs to be connected to two ensembles
X and Y. If the alternative hypothesis, /1 : Fx.x # Fx.¥, is true this
equality does no longer hold implying differences in the underlying
processes X and Y, leading to differences in the NCDs. From the
formulation of the hypotheses, tested by the statistic complexity, it
is apparent that we are following closely the guiding principle
expressed by Lépez-Ruiz et al. [12] as cited at the beginning of this
paper, because €5 is intrinsically a comparative measure. As a side
note regarding the choice of the null hypothesis we want to remark
that substituting Fxy with Fyymay encounter problems in cases
where the complexity value of objects in Y is systematically shifted
compared to the complexity value of objects in X. In this case, the
distributions Fxxand Fry could be similar, although, the complexity
of elements in X and Y are different. Practically, this may correspond
to a pathological case rarely encountered in practice, however,
conceptually, such a null hypothesis is apparently less stringent.

Regarding the notation and interpretation of the above procedure
it is important to note the following. First, the entities x and J' refer
to values of the NCD. For example, ¥ = NCD (x". X”') whereas x’ and
x" are observable objects that are identically and independently
(iid) generated from a process .X, X', X" ~ X Because x" and x" are
generated from the same process X, the resulting distribution
function Fx.x is only indexed by this process. The ) entities
are obtained similarly, however, in this case x' and )" are objects
generated from two different processes, namely x'~X and V' ~ Y
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. For this reason the distribution function is indexed by these two
processes, Fxy, Second, we use the notation, x’ ~ X, to indicate that
x' is generated from a process X, but also that x’ is drawn from Y.
The first meaning is clear if thinking of X" as a model for a complex
system, e.g., a cellular automata or a stochastic process. The latter
emphasizes the fact that such a process, even if deterministic,
becomes random with respect to, e.g., random initial conditions
and, hence, effectively is a stochastic process. Third, for reasons of
conceptual simplicity we require all objects to have the same size m.
This condition may be relaxed to allow objects of varying sizes but it
may require additional technical consideration. On a technical note,
the above defined statistic complexity has the very desirable property
that the power reaches asymptotically 1 for 71— % and 72— oC [32].
This means, for infinite many observations the error of the test to
falsely accept the null hypotheses when in fact the alternative is true
becomes zero. This limiting property is important to hold, because in
this case all information about the system is available and, hence, it
would be implausible if for such circumstances no error-free decision
could be achieved. Formally, this property can be stated as 20 for
11 =% and 72—, Finally, we would like to note that despite the
fact that statistic complexityis a statistical test, it borrows part of its
strength from the NCD respectively Kolmogorov complexity on
which this is based on. Hence, it unites various properties from very
different concepts.

hidden observations > . test statistic

~ {x',x"',...} -“:_ !f‘ Fx'x

~ {Y';Y"n---} ‘ %

Figure 1. Visualization of the problem and the construction of the test statistic
from observations.



