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Preface

This is a book on geometric measure theory and Fourier analysis. The main
purpose is to present several topics where these areas meet including some
of the very active recent interplay between them. We shall essentially restrict
ourselves to questions involving the Fourier transform and Hausdorff dimension
leaving many other aspects aside.

The book is intended for graduate students and researchers in mathematics.
The prerequisites for reading it are basic real analysis and measure theory.
Familiarity with Hausdorff measures and dimension and with Fourier analysis
is certainly useful, but all that is needed will be presented in Chapters 2 and 3.
Although most of the material has not appeared in book form, there is overlap
with several earlier books. In particular, Mattila [1995] covers part of Chapters
4-7, Wolft [2003] of Chapters 14, 19, 20 and 22, and Stein [1993] of 14 and
19-21. Several other overlaps are mentioned in the text. The surveys losevich
[2001], Laba [2008], [2014], Mattila [2004], Mitsis [2003a] and Tao [2001],
[2004] are closely related to the themes of the book.
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1

Introduction

The main object of this book is the interplay between geometric measure the-
ory and Fourier analysis on R". The emphasis will be more on the first in the
sense that on several occasions we look for the best known results in geometric
measure theory while our goals in Fourier analysis will usually be much more
modest. We shall concentrate on those parts of Fourier analysis where Haus-
dorff dimension plays a role. Much more between geometric measure theory
and Fourier analysis has been and is going on. Relations between singular inte-
grals and rectifiability have been intensively studied for more than two decades;
see the books David and Semmes [1993], Mattila [1995] and Tolsa [2014], the
survey Volberg and Eiderman [2013], and Nazarov, Tolsa and Volberg [2014]
for recent break-through results. Relations between harmonic measure, partial
differential equations (involving a considerable amount of Fourier analysis) and
rectifiability have recently been very actively investigated by many researchers;
see, for example, Kenig and Toro [2003], Hofmann, Mitrea and Taylor
[2010], Hofmann, Martell and Uriarte-Tuero [2014], and the references given
therein.

In this book there are two main themes. Firstly, the Fourier transform is a
powerful tool on geometric problems concerning Hausdorff dimension, and we
shall give many applications. Secondly, some basic problems of modern Fourier
analysis, in particular those concerning restriction, are related to geometric
measure theoretic Kakeya (or Besicovitch) type problems. We shall discuss
these in the last part of the book. We shall also consider various particular
constructions of measures and the behaviour of their Fourier transforms.

The contents of this book can be divided into four parts.

PART I Preliminaries and some simpler applications of the Fourier transform.

PART Il Specific constructions.



2 Introduction

PART III Deeper applications of the Fourier transform.

PART IV Fourier restriction and Kakeya type problems.

Parts I and III are closely linked together. They are separated by Part II
only because much of the material in Part IIl is rather demanding and
Part II might be more easily digestible. In any case, the reader may jump
over Part Il without any problems. On the other hand, the sections of Part I are
essentially independent of each other and only rely on Chapters 2 and 3. Part
IV is nearly independent of the others. In addition to the basics of the Fourier
transform, given in Chapter 3, the reader is advised to consult Chapter 11 on
Besicovitch sets and Chapter 14 on oscillatory integrals before reading Part I'V.

The applicability of the Fourier transform on Hausdorff dimension stems
from the following three facts. First, the Hausdorff dimension of a Borel set A C
R", dim A, can be determined by looking at the behaviour of Borel measures
w1 with compact support spt u C A. We denote by M(A) the family of such
measures i with 0 < w(A) < oo. More precisely, by Frostman’s lemma dim A
is the supremum of the numbers s such that there exists © € M(A) for which

w(B(x,r) <r* forxeR", r>0. (1.1)

This is easily transformed into an integral condition. Let

I(w) = / o — 1~ ey

be the s-energy of x. Then dim A is the supremum of the numbers s such that
there exists © € M(A) for which

Ii(p) < oo. (1.2)

For a given p the conditions (1.1) and (1.2) may not be equivalent, but they
are closely related: (1.2) implies that the restriction of w to a suitable set with
positive p measure satisfies (1.1), and (1.1) implies that p satisfies (1.2) for
any s’ < s. Defining the Riesz kernel k;, k;(x) = |x|™*, the s-energy of i can
be written as

For 0 < s < n the Fourier transform of k; (in the sense of distributions) is IZ =
y(n, s)k,—; where y(n, s) is a positive constant. Thus we have by Parseval’s
theorem

Lo = [Riaf =y [ 1s-aepds.



