Graduate Texts in
Mathematics

79

An Introduction to
Ergodic Theory

‘Springer-Verlag



Peter Walters

An Introduction to
Ergodic Theory

With 8 Illustrations

r

Springer-Verlag
New York Heidelberg Berlin




Peter Walters
Mathematics Institute
University of Warwick
Coventry CV4 7AL
England

Editorial Board

P. R. Halmos

Managing Editor

Indiana University
Department of Mathematics
Bloomington, Indiana 47401
USA

F. W. Gehring
University of Michigan
Department of Mathematics
Ann Arbor, Michigan 48104
USA

C. C. Moore

University of California

at Berkeley
Department of Mathematics
Berkeley, California 94720
USA

AMS Subject Classification: 28-01, 28DXX, 47A35, 54H20

Library of Congress Cataloging in Publication Data

Walters, Peter, 1943 —

An introduction to ergodic theory.

(Graduate texts in mathematics; 79)
Previously published as: Ergodic theory. 1975.

Bibliography: p.
Includes index.

1. Ergodic theory. I. Title. II. Series.
QA313.W34 1981 51542 81-9319
ISBN 0-387-90599-5 AACR2

© 1982 by Springer-Verlag New York Inc.
All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New

York 10010, U.S.A.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in
the People’s Republic of China only and not for export therefrom.
Reprinted in China by Beijing World Publishing Corporation, 2001

ISBN 0-387-90599-5 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90599-5 Springer-Verlag Berlin Heidelberg New York



Preface

In 1970 I gave a graduate course in ergodic theory at t.he Umversx?y of
Maryland in College Park, and these lectures were the basis of _the Springer
Lecture Notes in Mathematics Volume 458 called “Ergodic Thf:ory——
Introductory Lectures” which was published in 1975. This volume is now
out of print, so I decided to revise and add to the contents of these notes. I
have updated the earlier chapters and have added some new chapters on the
ergodic theory of continuous transformations of compact metric spaces. In
particular, I have included some material on topological pressure and
equilibrium states. In recent years there have been some fasc1patmg inter-
actions of ergodi- theory with differentiable dynamics, differential geometry,
number theory, von Neumann algebras, probability theor}', statistical
mechanics, and other topics. In Chapter 10 I have briefly descrlt.)ed some 9f
these and given references to some of the others. I hope that this book w1.11
give the reader enough foundation to tackle the research papers on ergodic
theory and its applications.

I would like to dedicate this volume to the memory of Rufus Bovflen ?vho
died on July 30, 1978 at the age of 31. He made outstanding contrlbutlgns
to ergodic theory and his friendship enhanced the lives of all who knew him.

April, 1981 : PETER WALTERS
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CHAPTER 0
Preliminaries

§0.1 Introduction

In its broadest interpretation ergodic theory is the study of the qualitative
properties of actions of groups on spaces. The space has some structure (e.g.
the space is a measure space, or a topological space, or a smooth manifold)
and each element of the group acts as a transformation on the space and
preserves the given structure (e.g. each element acts as a measure-preserving
transformation, or a continuous transformation, or a smooth transformation).
To see how this type of study arises consider a system of k particles moving
in R? under known forces. Suppose that the state of the system at a given time
is determined by knowing the positions and the momenta of each of the k
particles. Thus at a given time the system is determined by a point in R®~
As time continues the system alters according to the differential equations
governing the motion, e.g, Hamilton’s equations
dq; oH dp;  0H

dt  op, dt  dq;

If we are given an initial condition and if the equations can be uniquely solved
then the corresponding solution gives us the entire history of the system,
which is determined by a curve in RS,

If x is a point in the state space representing the system at a time t,, let
T,(x) denote the point of the state space representing the system at time
t + to. From this we see that T, is a transformation of the state space and,
moreover, Ty, =idand T,,, = T, T,. Thus t - T, is an action of the group
R on the state space. Because the Hamiltonian H is constant along solution
curves, each energy surface H !(e) is invariant for the transformation T,

1



2 ) 0 Preliminaries

so that we get an action of R on each energy surface. One is interested in the
asymptotic properties of the action i.e. in T, for large t. The transformations
T,| H™ '(e) are continuous and are smooth if H ~*(e) is smooth. Measure the-
ory enters this picture via a theorem of Liouville which tells us that if the forces
are of a certain type one can choose coordinates in the state space so that
the usual 6k-dimensional measure in these coordinates is preserved by each
transformation T,.

The word “ergodic” was introduced by Boltzmann to describe a hypoth-
esis about the action of {T,|t € R} on an energy surface H ™ '(e) when the
Hamiltonian H is of the type that arises in statistical mechanics. Boltzmann
had hoped that each orbit { T,(x)|t € R} would equal the whole energy surface
H ™ '(e) and he called this statement the ergodic hypothesis. The word
“ergodic” is an amalgamation of the Greek words ergon (work) and odos
(path). Boltzmann made the hypothesis in order to deduce the equality of
time means and phase means which is a fundamental algorithm in statistical
mechanics. The ergodic hypothesis, as stated above, is false. The property
the flow needs to satisfy in order to equate time means and phase means of
real-valued functions is what is now called ergodicity.

It is common to use the name ergodic theory to describe only the qualita-
tive study of actions of groups on measure spaces. The actions on topological
spaces and smooth manifolds are often called topological dynamics and
differentiable dynamics. This measure theoretic study began in the early
1930’s and the ergodic theorems of Birkhoff and von Neumann were proved
then. The next major advance was the introduction of entropy by
Kolmogorov in 1958. The proof, by Ornstein in 1969, that entropy was
complete for Bernoulli shifts revitalised the work on the isomorphism
problem. During recent years ergodic theory had been used to give important
results in other branches of mathematics.

We shall study actions of the group Z of integers on a space X i.e. we
study a transformation T:X — X and its iterates T", n € Z. This is simpler
than studying the actions of R. Of course, if {T, |t € R} isanactionof Ron X,
then by choosing t, # 0 and observing the system at the times ..., —ty, 0,
to, 2to, 3to, . . ., we are considering (T,,)", n € Z.

In the following sections we summarise some of the background ideas and
notation we shall be using.

We shall use Z to denote the set of integers, Z* to denote the non-negative
integers, R to denote the real numbers, R* to denote the non-negative reals,
and C to denote the complex numbers. The empty set will be denoted by &F.

If A,B are subsets of a set X, then B\A denotes the difference set
{xe X |x € B, x¢ A}, and A A B denotes the symmetric difference (4\B) U
(B\A). We use 2* to denote the collection of all subsets of X.

We use “iff” to denote “if and only if.” We number lemmas and theorems
in a single sequence (Theorem 5.6 is the sixth theorem in Chapter 5) but
give a corollary the same number as the corresponding theorem (Corollary
5.6.2 is the second corollary of Theorem 5.6).
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§0.2 Measure Spaces

We shall generally refer to Kingman and Taylor [ 1] and Parthasarathy [2].
Let X be a set. A g-algebra of subsets of X is a collection £ of subsets of X
satisfying the following three conditions: (i) X € #;(i1)if B € # then X\B € %;
(iii) if B,€ & for n > 1 then | )i, B, € 4.

We then call the pair (X, #) a measurable space. A finite measure on (X, )
is a function m: 2 — R* satisfying m() = 0 and m(| );%., B,) = >, m(B,)
whenever {B,}? is a sequence of members of # which are pairwise disjoint
subsets of X. (Actually the latter condition implies m() = 0 since m is
finite-valued.) A finite measure space is a triple (X, %, m) where (X, %) is a
measurable space and m is a finite measure on (X, 4). We say (X,%,m) is a
probability space, or a normalised measure space, if m(X) = 1. We then say
m is a probability measure on (X, #). We shall usually consider only prob-
ability spaces.

A finite signed measure on a measurable space (X, 4)is a functionm:% — R
satisfying m(&f) =0 and m((Ji>, B,) = Y=, m(B,) whenever {B,}{ is a
sequence of members of # which are pairwise disjoint subsets of X. The
Jordan decomposition says that a finite signed measure m on (X, %) can be
written as the difference m = m;, — m, of two finite measures on (X, %) which
are uniquely determined by m (see Kingman and Taylor [1], pp. 62 and 64).

Measurable spaces are usually constructed by having a collection & of
interesting subsets of a set X (such as the collection of all subintervals of
[0,1]) and then considering the smallest g-algebra # containing all these
subsets. This makes sense because 2* is a g-algebra and any intersection of
o-algebras of subsets of X is also a o-algebra of subsets of X. It is then usually
difficult to decide which subsets of X are in 4. When constructing a measure
on a measurable space (X, %) obtained in this way, one usually knows what
values the measure should take on members of & and then one needs to
extend it to be defined on #. We now describe the basic extension theorem of
this type. This involves discussion of the properties the collection & should
have.

A collection & of subsets of X is called a semi-algebra if the following three
conditions hold: (i) @ e &; (i) if A, Be &, then A n Be &; (iil) if A € &,
then X\A = ( J{-, E; whereeach E; € ¥ and E,, . . ., E, are pairwise disjoint
subsets of X. For example, the collection of all subintervals of [0, 1] is a semi-
algebra. Also, the collection of all subintervals of [0, 1] of the forms [0, 5]
and (a,b], with 0 < a < b < 1, forms a semi-algebra.

A collection & of subsets of X is called an algebra if the following three
conditions hold: (i) J e «; (i1) if A,Be o/, then A N Be o/; (iii) if A € &,
then X\A4 € &. Clearly every algebra is a semi-algebra and every o-algebra
is an algebra. In the definition of an algebra we can replace (ii) by the condi-
tion that whenever A4, ..., A, € o then ( J]-, A; € &/.

Since the intersection of any family of algebras of a set X is again an
algebra of subsets of X it makes sense to speak of the algebra generated by
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any given collection of subsets of X. There is the following simple theorem
(Parthasarathy [2], p. 19)

Theorem 0.1. Let & be a semi-algebra of subsets of X. The algebra, (%),
generated by & consists precisely of those subsets of X that can be written
in the form E = | Ji-, A; where each A;€ & and A, . .., A, are disjoint sub-
sets of X.

Suppose & is a semi-algebra of subsets of X. A function 7:% — R* is
called finitely additive if ©() =0 and (| )i, E;) = )7-, t(E;) whenever
E,, ..., E, are members of & which are pairwise disjoint subsets of X and
(Ji=1 Ei € &.Such amap tis called countably additive if the second condition
is replaced by the requirement that t(( )2, E;) = Y2, ©(E;) whenever (E;}?
are members of & which are pairwise disjoint subsets of X and | J2, E; € .
If & is the semi-algebra of all subintervals of [0, 1] of the form [0,b] and
(a,b] then the length function is countably additive. A simple application of
Theorem 0.1 gives the following (Parthasarathy [2], pp. 20 and 59).

Theorem 0.2. If & is a semi-algebra of subsets of X and t: ¥ — R™" is finitely
additive then there is a unique finitely additive function t,:9/(%)— R™ which
is an extension of 1 (i.e. T, =t on ). If t is countably additive then so is t,.

It could be that X ¢ % but we always have that X is a disjoint union of a
finite number of members E,, ..., E, of ¥ so 1,(X)=1if Y7, «(E) = 1.

There is the following theorem on extension from an algebra ./ to the
o-algebra %(A) generated by 7. (#(A) is the intersection of all g-algebras
that contain «7.) (See Parthasarathy [2], pp. 70 and 71).

Theorem 0.3. Let &/ be an algebra of subsets of X and let 1,:5/ - R* be
countably additive and t,(X) = 1. Then there is a unique probability measure
1, on (X, B(f)) which extends t,.

By combining Theorems 0.2 and 0.3 we see that a countably additive
function 7 on a semi-algebra & can be uniquely extended to a probability
measure on (X,%(¥)) if Y 7-, ©(E) =1 when X = (J}-, E; is a disjoint
union of members of . As an example the length function defined on the
semi-algebra of all subintervals of [0, 1] of the form [0,b] and (a,b] can be
uniquely extended to a probability measure, called the Lebesgue measure,
defined on the Borel subsets of [0, 1].

In checking that the extension works for particular examples the most
difficult part is usually showing countable additivity. This can sometimes be
done for T on the semi-algebra & (as for Lebesgue measure) but it is sometimes
more convenient to prove that t is finitely additive and that the finitely addi-
tive extension 7,:.4/(%) — R* is countably additive. The main tool for this
is the following theorem (Kingman and Taylor [1], p. 56).
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Theorem 0.4. Let 7 be an algebra of subsets of X and let t,:.o/ - R™ be

finitely additive and let ©,(X) = 1. Then t, will be countably additive if for

every decreasing sequence E; > E, > E;> - - of members of </ with
o E,= & we have t,(E,) — 0.

One situation where this theorem is used is in defining product measures
on a countable product of probability spaces. For i € Z let (X;, #;,m;) be a
probability space. Let X = [[2 -, X;.Soa point of X is a bisequence {x;}* ,
with x; € X; for each i. We now define a g-algebra # of subsets of X called
the product of the g-algebras #;. Let n > 0, let A; € 2, for | j| < n, and con-
sider the set

—(n+1) n o0
[T Xix I] 4;x JI Xi={(x)we X|x;€ 4;for|j| <n}.

i=—ow j=-n i=nt+1
Such a set is called a measurable rectangle and the collection of all such
subsets of X forms a semi-algebra &. The o-algebra % is the o-algebra
generated by &. We write (X, %8) = [ [2 _ . (X;,8). If we define 1:¥ - R*
by giving the above rectangle the value [[}-_, m;(4,), then one can use
Theorems 0.2 and 0.4 (see Kingman and Tayler [1], p. 140) to extend 7 to a
probability measure m on (X, %). The probability space (X, %, m) is called
the direct product of the spaces (X;,%;m) and is sometimes denoted

P _ o (X, B;,m,). The corresponding construction holds for a product

o (X;, B;,m)).

A special type of product space will be important for us. Here each space
(X;, #;,m,) is the same space (Y, %, p) and Y is the finite set {0, 1, ...,k — 1},
& = 2Y, and u is given by a probability vector (pg, py, - - - , Px—1) Where p; =
u({i}). We can take elementary rectangles where each A4; (in the description
above) is taken to be one point of Y. So if n > 0 and a; € Y, |j| < n, such an
elementary rectangle has the form {(x)®,|x; = a; for |j| < n}. We shall
denote this set by _,[a_p,@—u+1)s - - - s@n—1,a,], and call it a block with end
points —n and n. The collection of all these sets form a semi-algebra which
generates the product o-algebra #. We have m(_,[a,, .. .,a,],) = [ [j=.P;-
The measure m is called the (po, - . . ,px—1)-product measure. Sometimes we
consider blocks with end points h and | where h < . Such a set is one of the
form ,[ay, .. .,a); = {(x)%|x; = a; for h < i< [}. It has measure [ [i-, p..

Theorem 0.4 can also be used to obtain further measures on the space
(X,#) where X =[], Y, Y={0,1,...,k—1}, and & is the product
o-algebra described above. The following is a special case of the Daniell-
Kolmogorov consistency theorem (Parthasarathy [2], p. 119).

Theorem 0.5. Fix k> 1 and let Y = {0,1,... ,k — 1} and (X,%B) =[], (Y,
2Y). For each natural number n and ay, . . . , a, € Y suppose a non-negative real
number p,(ao, - . . ,a,) is given so that

(@ -2 polag) =1

apeY
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and
(b) Pn(ao, DRI aan) = z pn+l(aOv ce e ny Qpy l)'
an+1€Y
Then there is a unique probability measure m on (X, B) withm(,[ay, . . . ,a,]}) =

Di—wl@n, ... a) forallh <landalla;e Y,h<i<|

The proof boils down to showing that the function naturally defined on
the algebra of all finite unions of elementary rectangles is countable additive
by using Theorem 0.4.

There is another way, which is useful in some proofs, of describing the
o-algebra Z(«/) generated by an algebra /. A collection M of subsets of X
is called a monotone class if whenever E; ¢ E, = E; = - -- all belong to M
then so does | )i, E, and whenever F, > F, > F; > - - - all belong to M
then so does %,’f:, F,. Since the intersection of any family of monotone
classes is a monotone class, we can speak of the monotone class generated
by any given collection of subsets of X. '

Theorem 0.6. Let o/ be an algebra of subsets of X. Then (<) equals the
monotone class generated by <.

As we have seen we usually know the elements of an algebra .« but we do
not know which subsets of X belong to %(.«Z). This problem can sometimes

be overcome by using the following approximation theorem (Kingman and
Taylor [1], p. 84).

Theorem 0.7. Let (X, 2, m) be a probability space and let </ be an algebra of
subsets of X with #(<f) = B. Then for each e > 0 and each B € & there is some
A e of withm(A A\ B) <e.

Note that when m(4 A B) < ¢ then |m(A4) — m(B)| < & because m(A) =
m(A\B) + m(A n B) and m(B) = m(B\A) + m(A n B), so that |m(4)—
m(B)| < m(4 A B).

§0.3 Integration

Let Z(R) denote the o-algebra of Borel subsets of R. This is the o-algebra
generated by all open subsets of R and is also generated by the collection of
all intervals, or by the collection of all intervals of the form (¢, c0).

Let (X, %, m) be a measure space. A function f:X — R is measurable if
/7 1(D) € Z whenever D € Z(R) or equivalently if f~'(c, 0) € Z forall c € R.
A function f: X — C is measurable if both its real and imaginary parts are
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measurable. If X is a topological space and 4 the o-algebra generated by the
open subsets of X, then any continuous function f: X — C is measurable. We
say f =g ae. if m({x:f(x) # g(x)}) = 0. Suppose X is a topological space,
ZA(X) its o-algebra of Borel sets and m a measure on (X,%(X)) with the
property that each non-empty open set has non-zero measure. Then for two
continuous functions f, g: X — R, f = g a.e. implies f = g because {x: f(x) —
g(x) # 0} is an open set of zero measure. _

Let (X,%,m) be a probability space. A function f:X — R is a simple
function if it can be written in the form ) 7, a;x4,, where a; € R, 4; € 4, the
sets A; are disjoint subsets of X, and y,, denotes the characteristic function
of A;. Simple functions are measurable. We define the integral for simple
functions by:

ffdm = i a;m(A,).

This value is independent of thevrepresentation Y iGida,-
Suppose f: X — Ris measurable and f > 0. Then there exists an increasing
sequence of simple functions f, / f. For example, we could take

i—1 i—1 i
“An if Sf(X)<— i=1,...,n2"
flx)=< 2

n, if f(x) = n.

We define jf dm = lim,_, , | f,dm and note that this definition is independent
of the chosen sequence { f,}. We say f is integrable if | f dm < co.

Suppose f:X — R is measurable. Then f = f* — f~ where f¥(x)=
max{ f(x),0} > 0and f~(x) = max{—f(x),0} > 0. We say that f is integrable
if [f* dm, [ f~ dm < oo and we then define

ffdm=ff+dm—ff—dm.

Wesay f: X — Cisintegrable (f = f, + if,) if f, andf, are integrable and
we define

ffdmz ff, dm + iffzdm.

Observe that f is integrable if and only if | | is integrable. If f = g a.e. then
one is integrable if the other is and [ f dm = [gdm.

The two basic theorems on integrating sequences as functions are the
following.

Theorem 0.8 (Monotone Convergence Theorem). Suppose f; < f, < f3<
-+ + is an increasing sequence of integrable real-valued functions on (X, &, m).
If {[f,dm} is a bounded sequence of real numbers then lim,_. ,, f, exists a.e.
and is integrable and [(lim f,)dm = lim { f,dm. If {[f,dm} is an unbounded
sequence then either lim,., o f, is infinite on a set of positive measure or
lim,. ,, f, is not integrable.



8 0 Preliminaries

Theorem 0.9 (Fatou’s Lemma). Let { f,} be a sequence of measurable real-
valued functions on (X, 9, m) which is bounded below by an integrable function.
If liminf,_, | f,dm < oo then liminf,_, f, is integrable and | liminf f, dm <
liminf { f, dm.

Corollary 0.9.1 (Dominated Convergence Theorem). If g:X — R is inte-
grable and { f,} is a sequence of measurable real-valued functions with |f,| < g
a.e.(n>1)andlim,., f, = f a.e. then f is integrable and lim | f,dm = [ f dm.

We denote by L'(X, 8, m) (or L'(m)) the space of all integrable functions
f:X — C where two such functions are identified if they are equal a.e. How-
ever we write f € L'(X, %, m) to denote that f: X — C is integrable. The space
L'(X,%,m) is a Banach space with norm ||f]|, = {|f|dm.

If fe L'(X,2,m), then [, f dm denotes Jf “xadm.

If m is a finite signed measure on (X, %) and m = m; — m, is its unique
Jordan decomposition into the difference of two finite measures, then we can
define [ fdm = {fdm, — [ fdm, for f € L'(m,) n L'(m,).

§0.4 Absolutely Continuous Measures and
Conditional Expectations

Let (X,%) be a measurable space and suppose u, m are two probability
measures on (X, #). We say p is absolutely continuous with respect to m(u <« m)
if u(B) =0 whenever m(B) = 0. The measures are equivalent if p <« m and
m « p. The following theorem characterises absolute continuity.

Theorem 0.10 (Radon—Nikodym Theorem). Let pu, m be two probability mea-
sure on the measurable space (X, B). Then u < miff there exists f € L'(m), with
f=0and | fdm = 1,suchthat u(B) = (5 f dm VB € 2. The function f is unique
a.e. (in the sense that any other function with these properties is equal to f a.e.).

The function f is cailed the Radon—Nikodym derivative of u with respect
to m and denoted by du/dm.

The “opposite” notion to absolute continuity is as follows. Two probability
measures u, m on (X, &) are said to be mutually singular (1 L m) if there is
some B e # with u(B) = 0 and m(X\B) = 0. There is the following decom-
position theorem.

Theorem 0.11 (Lebesgue Decomposition Theorem). Let u, m be two probabil-
ity measures on (X, #). There exists p € [0, 1] and probability measures p,, u,
on (X,#) such that p=pu, + (1 — p)uy and p, <m, py L m. (u=pu, +
(I — p)u, means u(B) = puy(B) + (1 — p)us(B) VB € B). The number p and
probabilities p,, 1, are uniquely determined.
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The Radon-Nikodym theorem allows us to define conditional expecta-
tions. Let (X, %, m) be a measure space and let € be a sub-g-algebra of %.
We now define the conditional expectation operator E(-/¥): L*(X, %, m) —
LYX,%,m). If feL'(X,%,m) takes non-negative real values then u(C) =
a ! jcfdm (where a = jxfdm) defines a probability measue, u,, on (X, %,
m)and p, « m. By Theorem 0.10 there is a function E(f/%) € L'(X,%,m) such
that E(f/€) >0 and [cE(f/6¢)dm = [cfdmVC € 6. Moreover E(f/€) is
unique a.e. If f is real-valued we can consider the positive and negative
parts of f and define E(f/%) linearly. Similarly when f is complex-valued
we can use the real and imaginary parts to define E(f/%) linearly. There-
fore if f € L'(X, %, m) then E(f/%) is the only ¥-measurable function with
[cE(f/€)dm = [-fdmVC e¥. The following properties of the map
E(-/6):L'(X,#,m)— L'(X,%,m) hold (Parthasarathy [2], p. 225):

(i) E(-/%) is linear.
(ii) If £ > O, then E(f/¥) > 0. ‘
(iii) If f € LY(X, %, m) and g is ¥-measurable and bounded,

E(fg/%) = gE([/€).

(v) |[E(f/®)| < E(|f|/%),  feLXX,%B,m)
(v) 16, = €,, then E(E(f/%,)/%,) = E(f/,), f € L\X, B, m).

§0.5 Function Spaces

One way to deal with some problems on a measure space is to use certain
natural Banach spaces of functions associated with the measure space.

Let (X, %,m) be a measure space and let p e R with p > 1. Consider the
set of all measurable functions f: X — C with | f|” integrable. This space is a
vector space under the usual addition and scalar multiplication of functions.
If we define an equivalence relation on this set by f ~ g iff f = g a.e. then
the space of equivalence classes is also a vector space. Let L?(X,%,m)
denote the space of equivalence classes, although we write f € L?(X, %, m) to
denote that the function f:X — C has | f|? integrable. The formula || f]|, =
[f|f]? dm]"/® defines a norm on L?(X, %, m) and this norm is complete. There-
fore LP(X, 2, m) is a Banach space. If L§(X, 2, m) denotes those equivalence
classes containing real-valued functions then L§(X,4%,m) is a real Banach
space. The bounded measurable functions are dense in LP(X,%,m). If
m(X)< oo and 1 <p<gq then LYX,%#,m)c LP(X,2%,m). We sometimes
write LP(m) or L?(A) instead of LP(X, #, m) when no confusion can arise.

A Hilbert space s is a Banach space in which the norm is given by an
inner product, i.e., 5 is a Banach space and there is a map (-, -): 3 x # —
C such that {, -) is bilinear, (f,g) = (g, f) Vg, f € #,(f, f) = 0Vf € #, and
f=(f,f)"*isthenormon #.
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The Banach space LP(X,%,m) is a Hilbert space iff p = 2. The inner
product in L*(X, 28, m) is given by (f,g) = [ fg dm.
In every Hilbert space # we have the Schwarz inequality:

Lol < I llgll  Vf.ge.

Separable Hilbert spaces (i.e. those having a countable dense set) are the
simplest. The space L*(X, 4, m) is separable iff (X, 8, m) has a countable basis,
in the sense that there is a sequence of elements {E,}? of # such that for
every e > Oand every B € Z with m(B) < oo thereissomenwithm(B A E,) <
e. If X is a metric space and 4 is the ¢-algebra of Borel subsets of X (the
o-algebra generated by the open sets) and m is any probability measure on
(X, %) then (X, 8, m) has a countable basis. (This follows from Theorem 6.1.)
Therefore most of the spaces we shall deal with have L%(X, %, m) separable.

Any separate Hilbert space J# contains a basis {e,}7, i.c. (e, e) =0 if
n # k and only the zero element is orthogonal to all the e,. If {e,}} is a
basis then each v € J# is uniquely expressible as v = ) 2., a,e, where a, € C.
We have

© ©
lo||* = Z; las)? so that Zx |a,|* < o0.
n= n=

An isomorphism between two Hilbert spaces J#,, 5, is a linear bijection
W:#, — #, that preserves norms (||Wv| = ||v||Vve #,). The norm-
preserving condition can also be written as (Wu, Wr) = (u,v) Yu, v € #,.
Any two separable Hilbert spaces are isomorphic if they both have a basis
with an infinite number of elements. A Hilbert space with a basis of k elements
is isomorphic to C*. An isomorphism of a Hilbert space # to itself is called
a unitary operator.

If V is a closed subspace of a Hilbert space # then V* = {he #|(v,h) =0
Vv e V} is a closed subspace of # and V & V= (ie.each f € # hasa
unique representation f = f; + f, where f; € V and f, € V*.) The linear oper-
ator P:5# — V given by P(f) = f, is called the orthogonal projection of #
onto V. In fact P(f) is the unique member of V that satisfies || f — P(f)|| =
inf {||f — v|||ve V}. We have P|V = id and (Pf,g) = (f,Pg) Vf,g € H#.

Let (X, %, m) be a probability space and recall from §0.4 that if € is a
sub-g-algebra of # then the conditional expectation operator

E(-/€):L\X, B,m) — L\(X,%,m)

is defined. Since L*(X,4,m)< L'(X,#,m) the conditional expectation
operator acts on L*(X,%,m) and the following result describes what this
restriction is.

Theorem 0.12. Let (X, 2, m) be a probability space and let € be a sub-c-algebra
of #. The restriction of the conditional expectation operator E(-/%) to
L*(X,2,m) is the orthogonal projection of L*(X,#,m) onto L*(X, %, m).



