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Introduction

This book contains survey articles based on some invited lectures of two workshops
of the RICAM Special Semester on Applications of Algebra and Number Theory:

- Algebraic Curves over Finite Fields (November 11-15, 2013).

- Emerging Applications of Finite Fields (December 9-13, 2013).

These workshops brought together some of the worldwide most prominent researchers
in the area of finite fields and their applications. Some classical as well as very new
problems on curves and other aspects of finite fields were addressed, with emphasis
on their diverse applications.

Finite fields are the meeting point of algebra, number theory, computer science,
combinatorics, cryptography, to mention just a few. The book describes some of the
most recent achievements in theory and applications of finite fields with a focus on
curves and cryptography.

The theory of algebraic curves (or function fields) has its origins in number theory.
However, many applications of curves were found in different areas such as coding
theory, sphere packings and lattices, sequence design, quasi-Monte Carlo methods,
and cryptography. The use of algebraic curves often led to better results than those
within classical approaches.

The book presents some new developments and stimulates the interaction be-
tween different application areas as well as the continuous quest for new applications.
The main application area of curves (or function fields) is coding theory. The chap-
ter of Bassa, Beelen, and Nguyen gives an overview of known and new techniques
for constructing good towers of function fields. The chapter of Giuletti and Korch-
maros surveys recent results and open problems on curves with many automorphisms,
while the survey of Achter and Pries presents results and open questions about the p-
ranks and Newton polygons for curves in positive characteristic. The chapter of Villa-
Salvador contains the proof of an analogue in positive characteristic of the Kronecker-
Weber theorem that the maximal Abelian extension of the rationals is the union of
all cyclotomic number fields. The chapters of Carlet and Guilley respectively Pott,
Schmidt, and Zhou deal with Boolean functions and related topics as side-channel
attacks and difference sets. The chapter of Cheon, Kim, and Song discusses a modifica-
tion of the discrete logarithm problem which is the basis for the security of the Diffie-
Hellman public key exchange. The chapter of Steinfeld gives an overview of recent
developments on the NTRU and related cryptosystems. The chapter of Helleseth sur-
veys known results on nonlinear shift registers which are very attractive alternatives
to linear ones. Finally, the chapter of Pausinger and Topuzoglu studies permutation
polynomials of finite fields for constructing uniformly distributed permuted Halton
sequences for quasi-Monte Carlo integration.
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All these chapters were reviewed and we wish to thank the anonymous referees
for their precious help.

We also like to thank the program chairs of the two workshops, Henning Stichte-
noth and Igor Shparlinski, as well as Annette Weihs and Wolfgang Forsthuber for
administrative support and all the speakers of the workshops listed below who con-
tributed with excellent talks and made the workshop a great success: Nurdagiil Anbar,
Peter Beelen, Herivelto Borges, Cicero Carvalho, Ignacio Cascudo, Iwan Duursma, Ar-
naldo Garcia, Olav Geil, Massimo Giulietti, Clemens Heuberger, Gabor Korchmaros,
Aristides Kontogeorgis, Florian Luca, Rachel Pries, Luciane Quoos-Conte, Christophe
Ritzenthaler, Gabriel Villa-Salvador, Chaoping Xing, Alexey Zaytsev (algebraic curves)
and Andreas Bender, Claude Carlet, Jung Hee Cheon, Pierrick Gaudry, Alexey Gli-
bichuk, Tor Helleseth, Doowon Koh, Swastik Kopparty, Winnie Li, Ferruh Ozbudak,
Oliver Roche-Newton, Alexander Pott, Nitin Saxena, Ilya Shkredov, Ron Steinfeld,
Ming Su, Julia Wolf (finite fields).

More details on this special semester can be found on the webpage
www.ricam.oeaw.ac.at/specsem/specsem2013/.

We also thank the Radon Institute for Computational and Applied Mathematics
(RICAM) of the Austrian Academy of Sciences for financial support.

Linz, December 2013 Harald Niederreiter,
Alina Ostafe,

Daniel Panario,

Arne Winterhof
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Jeffrey D. Achter and Rachel Pries
Generic Newton polygons for curves of
given p-rank

Abstract: We survey results and open questions about the p-ranks and Newton poly-
gons of Jacobians of curves in positive characteristic p. We prove some geometric re-
sults about the p-rank stratification of the moduli space of (hyperelliptic) curves. For
example, if 0 < f < g — 1, we prove that every component of the p-rank f + 1 stra-
tum of M contains a component of the p-rank f stratum in its closure. We prove that
the p- rank f stratum of M is connected. For all primes p and all g > 4, we demon-
strate the existence of a Jacoblan of a smooth curve of genus g, defined over lF , whose
Newton polygon has slopes {097%, 1/4, 3/4, 197*}. We include partial results about the
generic Newton polygons of curves of given genus g and p-rank f.

Keywords: Newton polygon, curve, Jacobian, p-rank, moduli space

Mathematics Subject Classification 2010: 11G20, 11M38, 14H10, 14H40, 14105, 11G10

Jeffrey D. Achter, Rachel Pries: Department of Mathematics, Colorado State University, Fort Collins,
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1 Introduction

Suppose C is a smooth projective curve of genus g defined over a finite field IFq of char-
acteristic p. Then its zeta function has the form Z /¥, (T) =L, /K, (T)/[(1-T)(1-4qT)]
for some polynomial L, /E, (T) € Z[T]. The Newton polygon vof Cisthat of Le /E, (T);

it is a lower convex polygon in R* with endpoints (0, 0) and (29, g). Its slopes encode
important information about C and its Jacobian.

Givena curve C/ IF, of genus g, there are methods to compute its Newton polygon.
After some experiments, it becomes clear that the typical Newton polygon has slopes
only 0 and 1. For small g and p, the other possible Newton polygons do occur, but
rarely, leading us to the following question.

Question 1.1. Does every Newton polygon of height 2g (satisfying the obvious necessary
conditions) occur as the Newton polygon of a smooth curve defined over a finite field of
characteristic p for each prime p?

The answer to this question is unknown, although one now knows that every integer f
suchthat 0 < f < goccurs as the length of the line segment of slope 0 for the Newton

The first author is supported in part by Simons Foundation grant 204164. The second author is sup-
ported in part by NSF grant DMS-11-01712
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polygon of a curve in each characteristic p [12]. As an example, we consider the first
open case, when g = 4 and v has slopes 1/4 and 3/4. We confirm in Lemma 5.3 that
this Newton polygon occurs for a curve of genus 4 for each prime p using a unitary
Shimura variety of type U(3, 1).

The main idea in this chapter is that the occurrence of a certain Newton polygon
for a curve of small genus can be used to prove the occurrence of new Newton polygons
for smooth curves for every larger genus. As an application, we prove in Corollary 5.6
that the Newton polygon vg"‘ having g — 4 slopes of 0 and 1 and four slopes of 1/4
and 3/4 occurs as the Newton polygon of a smooth curve of genus g for all primes p
andallg = 4.

The key condition above is that the curve must be smooth, because it is easy to
produce singular curves with decomposable Newton polygons by clutching together
curves of smaller genus. In order to deduce results about Newton polygons of smooth
curves from results about Newton polygons of singular curves, we rely on geometric
methods from [2]. It turns out that one of the best techniques to determine the exis-
tence of a curve whose Jacobian has specified behavior is to study the geometry of the
corresponding loci in M, the moduli space of smooth proper curves of genus g.

More precisely, the p-rank f and Newton polygon are invariants of the p-divisible
group of a principally polarized Abelian variety. The stratification of the moduli space
A, by these invariants is well understood, in large part because of work of Chai and
Oort. Let A g be the moduli space of principally polarized Abelian varieties of dimen-
sion g. The Torelli map 7: M, — A, which sends a curve to its Jacobian, allows us
to define the analogous stratifications on M g For dimension reasons, this gives a lot
of information when 1 < g < 3 and very little information when g > 4. For example,
in most cases it is not known whether the p-rank f stratum Mg is irreducible.

In Section 2, we review the fundamental definitions and properties of the p-rank
and Newton polygon. In Section 3, we review the p-rank and Newton polygon strati-
fications of A g+ Since degeneration is one of the few techniques for studying stratifi-
cations in M P in Section 4.1 we recall the Deligne-Mumford compactification of M ”
and explain how it interacts with the p-rank stratification.

In Section 4.2, we review a theorem that we proved about the boundary of the p-
rank strata M£ of M gin [2]. Using this, we prove that M p is connected for all g > 2
and 0 < f < g (Corollary 4.5). For f > 1, we also prove that every component of Mg

contains a component of Mg'l in its closure (Corollary 4.4).

In Section 5, we consider the finer stratification of M 4 by Newton polygon. We con-
sider a Newton polygon véf]' which is the most generic Newton polygon of an Abelian
variety of dimension g and p-rank f. The expectation is that the generic point of ev-
ery component of Mg represents a curve with Newton polygon vg . We prove that this
expectation holds in the first nontrivial case when f = g—3in Corollary 5.5 and prove
a slightly weaker statement when f = g — 4 in Corollary 5.6.
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The discrete invariants associated with these stratifications seem to influence
arithmetic attributes of curves over finite fields, such as automorphism groups and
maximality. One should note, however, that this relationship is somewhat subtle. On
one hand, many exceptional curves turn out to be supersingular, meaning that New-
ton polygon is a line segment of slope 1/2. For example, it is not hard to prove that a
curve which achieves the Hasse-Weil bound over a finite field must be supersingular.
On the other hand, the p-rank stratification is in some ways “transverse” to other in-
teresting lociin M 4 illustrated by the fact that a randomly chosen Jacobian of genus g
and p-rank f behaves like a randomly selected principally polarized Abelian variety
of dimension g. In Sections 4.4 and 5, we discuss open questions and conjectures on
these topics.

2 Structures in positive characteristic

Consider a principally polarized Abelian variety X of dimension g defined over a
field K of characteristic p > 0.If N > 2 is relatively prime to p, then the N-torsion
group scheme X[N] is étale, and X[N](K) = (Z/N)®*¢ depends only on the dimen-
sion of X. In contrast, X[p] is never reduced, and there is a range of possibilities
for the geometric isomorphism class of X[ plz and, a fortiori, the p-divisible group
X[p™] = lim_, X[p"]. In this section, we review some attributes of X[p] and
X[p™], with special emphasis on the case where X is the Jacobian of a curve over a
finite field.

2.1 The p-rank

The p-rank of X is the rank of the “physical” p-torsion of X. More precisely, it is the
integer f such that .
X[pI(K) = (z/p)* . 1)

We will see below (2.2.3) that 0 < f < g. The Abelian variety X is said to be
ordinary if its p-rank is maximal, i.e. f = g.

Specifying a K-point of X[p] is equivalent to specifying a homomorphism
X[pl — (Z/p) of group schemes over K, and thus one may also define f by

f= dim,Fp Homg(X[pl, (Z/p)) .

Now, X[ p] is a self-dual group scheme, and the dual of (Z/ p) is the nonreduced group
scheme g, the kernel of Frobenius on the multiplicative group G,,. Consequently, it
is equivalent to define the p-rank of X as

f = dimg Homg(u,, X[p]) .
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(This last formulation is convenient for defining the p-rank of semi-Abelian varieties
and semistable curves.)

If X is the Jacobian of a smooth, projective curve C, then the p-rank equals the
maximum rank of a p-group which occurs as the Galois group of an unramified cover
of C [20, Corollary 4.18].

2.2 Newton polygons

2.2.1 Newton polygon of a curve over a finite field

LetC/ ]Fq be a smooth, projective curve of genus g. Then its zeta function

Zeyg (T) = exp < Y #C(F )T /k)

k>1
is a rational function of the form
, Ly (T)
€% " (1-T)(1 - 4qT)

where L /¥, (T) € Z[T] is a polynomial of degree 2g. The L-polynomial factors over
Qas
Lo (T) = [] -aT),
1<j<2g
where the roots can be ordered so that

ajo,, ;=q foreachl < j<g. (2.2)

Each a; has Archimedean size /g; for each «: Q — C, one has |t(aj)| = /4.
In contrast, there is a range of possibilities for the p-adic valuations of the «;. The
Newton polygon of C (or of its Jacobian X) is a combinatorial device which encodes
these valuations.

Let K be a field with a discrete valuation v, and let h(T') = Y a,-Ti € K[T]bea
polynomial. The Newton polygon of h(T) is defined in the following way.

In the plane, graph the points (, v(g;)), and form its lower convex hull. This object
is called the Newton polygon of h. Equivalently, it suffices to track the multiplicity e(A)
with which each slope A occurs in the diagram. Thus, we will often record a Newton
polygon as the function

Q— ZZZO
A e(d),

which, to each A, assigns the length of the projection of the “slope A” part of the New-
ton polygon ontoits first coordinate. This function encodes the valuation of the roots of



