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1
Introduction

Kai Johnsson, and Susanne Brakmann

The application of evolutionary and combinatorial techniques to study and solve com-
plex biological and chemical problems has become one of the most dynamic fields in
chemistry and biology. The book presented here is a loose collection of articles aiming
to provide an overview of the current state of the art of the directed evolution of pro-
teins as well as highlighting the challenges and possibilities in the field that lie ahead.
Although the first examples of directed molecular evolution date back to the pioneer-
ing experiments of S. Spiegelman et al. and of M. Eigen and W. Gardiner, who pro-
posed that evolutionary approaches be adapted for the engineering of biomolecules [1,
2], it was the success of methods such as phage display for in vitro selection of peptides
and proteins as well the selection of functional nucleic acids using the SELEX proce-
dure (Systematic Evolution of Ligands by Exponential enrichment) that brought the
power of this concept to the attention of the general scientific community [3, 4]. In
the last decade, directed evolution has become a key technology for biomolecule en-
gineering. The success of the evolutionary approach, however, not only depends on
the potency of the method itself but is also a result of the limitations of alternative
approaches, as our lack of understanding of the structure-function relationship of
proteins in general hinders the rational design of biomolecules with new func-
tions. What are the prerequisites for a successful directed evolution experiment?
In its broadest sense, (directed) evolution can be considered as repeated cycles of var-
iation followed by selection. In the first chapter of the book, the underlying principles
of this concept and their application to the evolutionary design of biomolecules are
reviewed by P. Schuster — one of the pioneers in the field of molecular evolution.
Naturally, the first step of each evolutionary project is the creation of diversity. The
most straightforward approach to create a library of proteins is to introduce random
mutations into the gene of interest by techniques such as error-prone PCR or satura-
tion mutagenesis. The success of random mutagenesis strategies is witnessed by their
ample appearances in the different chapters of this book describing case studies of
particular classes of proteins and enzymes. In addition, recombination of mutant
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genes by DNA shuffling or related techniques can be used to create additional diversity
and to accumulate rapidly beneficial and additive point mutations [5]. This is a key
technique that also surfaces in the majority of the chapters. The sequence space
searched by these approaches is, however, quite limited. DNA shuffling between
homologous genes, which has also been called family shuffling, allows yet unexplored
regions of sequence space to be accessed [6]. In the chapter by S. Lutz and S. ]. Ben-
kovic, an approach to create chimeras even between non-homologous genes and its
application in protein engineering is described.

An interesting alternative to the generation of libraries with in vitro methods is the
generation of so-called environmental libraries, described by R. Daniel. Here, advan-
tage is taken of natural microbial diversity by isolating and cloning environmental
DNA and by using the resulting libraries to search for novel biocatalysts.

After the creation of diversity, i.e. the generation of a library of different mutants, the
protein(s) with the desired phenotype (function or activity) have to be selected from the
library. This can be achieved by either selection or screening procedures. The principal
advantage of selection is that much larger libraries can be examined: the number of
clones that can be subjected to selection is, in general, five orders of magnitudes above
those that can be sorted by advanced screening methods. Impressive examples for the
power of true selection, where the survival of the host is directly coupled to the desired
phenotype, can be found in the chapters written by D. Hilvert et al. and J. F. Davidson et
al.. The major challenge of most selection approaches is to couple the desired pheno-
type, such as the catalysis of an industrially important reaction, to the survival of the
host. But what can be done if the desired phenotype cannot provide a direct selective
advantage to a given host organism? Different approaches appear feasible: if the de-
sired property binds to a given molecule, display systems for the protein of interest
such as phage display, ribosomal display or mRNA display, and the subsequent in vitro
selection of binders by so-called panning procedures are established technologies (3, 7,
8]. A recent publication by the group of J. W. Szostak describes the employment of in
vitro selection of functional proteins from libraries of completely randomized 80mers
(actual library size ~10") using mRNA display. This work highlights the power of in
vitro selection, and is a striking example of an experiment that would simply be im-
possible to perform using screening procedures [9]. In the chapter written by P. Sou-
million and |. Fastrez, an interesting extension of this approach, the in vitro selection of
novel enzymatic activities using phage display, is reviewed. Here, clever selection
schemes link the immobilization of the phage to the desired reactivity.

Another approach to the selection of biomolecules with novel functionalities, i.e.
binding, or even enzymatic activity, is based on the yeast two- and three-hybrid sys-
tem. The potential and limitations of these and related approaches are reviewed in the
chapter contributed by the group of V. W. Cornish et al.
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Despite their inferiority in terms of number of clones examined, screening proce-
dures have become increasingly important over the last years. One important reason
for this is the enormous technological progress that has been achieved in automation
and miniaturization, allowing up to 10° different mutants to be screened in a reason-
able timeframe. An overview of advanced screening strategies is given in the article of
A. Schwienhost. In the chapter written by K. D. Wittrup a discussion of the prerequi-
sites for a successful screening process is given, analyzing the outcome of the directed
evolution of proteins displayed on cell surfaces as a function of the screening condi-
tions. The power of intelligently designed screening processes is demonstrated in the
following contributions: M. T. Reetz and K.-E. Jaeger describe screening techniques to
engineer the enantioselectivity of enzymes; T. Lanio et al. present their approaches for
the evolutionary generation of restriction endonucleases, U. T. Bornscheuer reports on
the functional optimization of lipases, and last but not least, P. C. Cirino and F. H.
Arnold give an overview of directed evolution experiments with heme enzymes.

Clearly, there are various developments and applications in the field of directed
evolution that are not covered by any of the articles published in this book. Neverthe-
less, we hope to provide a snapshot of this rapidly developing field that will inspire and
support scientists with different backgrounds and intentions in planning their own
experiments.

Finally, we would like to thank all authors for their contributions, and P. Golitz and
K. Kriese of Wiley-VCH for their continuous motivation and help in getting this book
published.
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2
Evolutionary Biotechnology — From Ideas and Concepts
to Experiments and Computer Simulations

Peter Schuster

Research on biological evolution entered the realm of science in the 19th century with
the centennial publications by Charles Darwin and Gregor Mendel. Molecular models
for evolution under controlled conditions became available only in the second half of
the twentieth century after the initiation of molecular biology. This chapter presents an
account of the origins of molecular evolution and develops the concepts that have led to
successful applications in the evolutionary design of biopolymers with predefined
properties and functions.

2.1
Evolution in vivo — From Natural Selection to Population Genetics

Nature is the unchallenged master in design by variation and selection and since
Charles Darwin’s epochal publication of the “Origin of Species” [1, 2] the basic prin-
ciples of the mechanism behind natural selection have become known. Darwin de-
duced his principle of evolution from observations “in the field” and compared spe-
cies adapted to their natural habitats with the results achieved through artificial selec-
tion by animal breeders and in nursery gardens. Natural selection introduces changes
in populations by differential fitness, which is tantamount to the instantaneous dif-
ferences in the numbers of decedents between two competing variants. In artificial
selection the animal breeder or the gardener interferes with the natural selection pro-
cess by discarding the part of the progeny with undesired properties. Only shortly after
the publication of Darwin’s “Book of the Century” the quantitative rules of genetics
were discovered by Gregor Mendel [1, 2]. It took, nevertheless, about seventy years
before Darwin’s theory was united successfully with the consequences of Mendel’s
results in the development of population genetics [2, 3].

The differential equations of population genetics are commonly derived for sexually
replicating species and thus deal primarily with recombination as the dominant source
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of variation. Mutation is considered as a rather rare event. In evolutionary design of
biopolymers the opposite is true: Mutation is the common source of variation and
recombination occurs only with special experiments, “gene shuftling” [4], for exam-
ple. In the formulation of the problem we shall consider here the asexual case exclu-
sively. The mathematical expression dealing with selection through differential fitness
is then of the form

dx; "
d—t":xk(fkfzj:]ﬁxj)zxk(ﬁ;—d)); k=1,2,...,n (1)

The fraction of variant I, is denoted by x, with g} x;, = 1; f, is its fitness value. Accord-
ingly, we introduced ¢ = g, f; x; as the mean fitness of the population. The mathe-
matical role of ¢ is to maintain the normalization of variables. The interpretation of Eq.
(1) is straightforward: Whenever the differential fitness, fi-¢, of a variant I, is positive
or its fitness is above average, f, >, dx, /dt is positive and this variant will increase in
frequency. The opposite is true if f, <¢, then the fraction of the corresponding variant
will decrease and ultimately approach zero: The variant has died out. Selection thus
chooses the variant I,, with the highest fitness value, f,, = max{ f;, k= 1,2,...,n}, and after
sufficiently long time only this variant will be present in the population, lim _, _ x,, = 1.
In other words, if we wait long enough, all less fit variants will have died out, and the
population becomes homogeneous.

The typical evolutionary scenario considered by population genetics is characterized
by low mutation rates. Then the arrival of a new variant by mutation, I, in a currently
optimized population (containing exclusively I,,) is a rare event and the dynamics of
Eq. (1) is visualized in response to such an instant. Apart from a stochastic initial
phase, during which the new species is in danger of dying out by accident, the course
and the outcome of the selection process is determined exclusively by the difference in
fitness values: s = f; - f,,. The value of s is reflected by the number of generations that
are required to select the advantageous mutant (see Fig. 2.1). In nature selective
advantages of emerging mutants are commonly very small and hence thousands of
generations are required before a new variant can take over in the population.

Population genetics saw a major extension by Motoo Kimura [5] who suggested that
adaptive mutations were extremely rare, most mutants were selectively neutral, and
the predominant role of evolution was the elimination of deleterious variants. Ki-
mura’s view was strongly supported by the data obtained from comparative sequence
analysis of proteins and nucleic acids [6], which became the basis of current molecular
phylogeny. Genotypes are changing steadily and this also during epochs of phenotypic
stasis. Despite overwhelming indirect hints for neutral evolution from molecular data,
the first direct proof came only recently from experiments on bacterial evolution under
controlled conditions: The change in phenotypic properties, like cell size, shows clear



