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Preface

The spectrophotometer on the bench is a familiar feature of any biochemistry laboratory.
It requires no great skill to use, is sensitive enough to handle materials at physiological
concentrations and, best of all, it produces immediate data. As is so often the case,
however, familiarity can lead to contempt — too many spectrophotometers are used
without sufficient care, are rarely serviced or calibrated and, often, are underused (or
even misused) in terms of the facilities they provide.

This book, therefore, is intended to help the reader get the most out of his spec-
trophotometer and its close relation, the spectrofluorimeter. Applications are describ-
ed to the characterisation and quantitation of both small and large molecules (photometric
assays), to the investigation of intermolecular interactions (ligand binding studies) and
to the study of molecular conversions (monitoring chemical reactions) — these both
in equilibrium (static) and changing (kinetic) systems.

At every stage, emphasis is placed on the capabilities and limitations of the instru-
ment in use — how to select a machine for a given task, how to check if it is working
satisfactorily, and what to do if it fails to produce the expected data. Applications of
single, dual and multiple (spectral) wavelength modes of measurement are described,
and their respective advantages explained. Chapter 5 also demonstrates the use of the
microscope for measurements typically considered the domain of the conventional spec-
trophotometer or fluorimeter.

It is assumed throughout that commercially available instruments will be used by
the reader — those who design a dedicated spectrophotometer for a specific task are
unlikely to require this text to help them use it. Some possible workshop modifications
of commercial spectrophotometers (e.g. low temperature and rapid mixing attachments)
are however described. In some cases commercial instruments are named; the reader
should note that in such cases, the specific instrument should be taken as representative
of a class and that other manufacturers may well supply comparable instruments.

The editors would like to thank the authors who participated in producing this text,
colleagues who read and commented upon it and Mrs B. Bashford for help in produc-
ing many of the figures. We are also indebted to Kontron instruments for supplying
most of the photographs and diagrams for Chapter 1.

D.A.Harris and C.L.Bashford
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CHAPTER 1

An Introduction to Spectrophotometry and
Fluorescence Spectrometry

C.LINDSAY BASHFORD

|. GENERAL CONSIDERATIONS

All biochemicals absorb energy from at least one region of the spectrum of electro-
magnetic radiation. The energies at which absorption occurs depend on the available
electronic, vibrational and rotational energy levels of the molecule. When absorption
is from the u.v./visible region of the spectrum (200 —700 nm), transitions occur be-
tween electronic energy levels, and these electronic transitions form the physical basis
for the techniques described in this volume. Spectrophotometry and fluorescence spec-
trometry (spectrofluorimetry) involve the measurement of these transitions in precise,
analytical procedures which permit the characterisation and quantification of (biological)
molecules.

A simple appreciation of the fundamental processes occurring when radiation interacts
with matter is useful for understanding the operation of spectrophotometers, and is given
below. However, a detailed theoretical understanding of these processes is not required
for the laboratory application of photometric techniques. Readers interested in these
aspects should consult physical chemistry texts.

1.1 Absorption of Light

Molecules absorb energy only when the incident photon has an energy precisely equal
to the difference in energy between two allowed states, the photon promoting the tran-
sition of an electron from the lower to the higher energy state. Before another photon
can be absorbed, the excited state must lose this energy and revert to the ground state.
Commonly, this reversion is rapid (<1072 sec) and occurs by loss of energy to vibra-
tions and rotations within the same molecule and, by collision, to other molecules
(especially the solvent). In short, energy is lost to the environment as heat. The rapid-
ity of reversion is such that, at moderate light intensities, the number of photons ab-
sorbed is proportional to light intensity, and constant in time.

If the exciting beam is particularly intense, as it can be with laser light sources, the
excitation rate may exceed the rate of decay of the excited state. The number of photons
absorbed from a beam of given intensity will thus fall in time as the number of ground
state molecules falls — a phenomenon known as photobleaching. Such intense sources
are thus avoided in the measurements described here; the fraction of molecules in the
ground state remains close to one (>99%) and absorption is constant with time.

Another possible cause of photobleaching is a chemical reaction of the excited state.
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The chemistry of excited state molecules may differ from that of ground state molecules
— they are in general more reactive — and during intense illumination unexpected
‘photochemical’ reactions may occur leading to incorrect measurements and, at worst,
destruction of a valuable sample. However, light sources for absorbance measurements
(see below) are rarely sufficiently intense to cause problems of this type. In favourable
circumstances the wavelength-dependence of ‘photochemical’ reactions will provide
useful ‘action spectra’ of complex systems (see Chapter 7).

1.2 Emission of Light

In some molecules, particularly rigid conjugated systems, loss of energy from the ex-
cited state by vibration or rotation may be slow. In this case, the excited state may
lose energy, in addition, by radiative emission i.e. by emitting a photon. If emission
is from a singlet excited state, this process is known as fluorescence; if from a triplet
state, it is phosphorescence. For observable fluorescence, the lifetime of the excited
state must be about 107° sec, and for phosphorescence it must be about 1073 sec.
Clearly, for radiative decay to compete significantly with energy loss as heat, vibra-
tions and rotations within the excited state must be severely restricted to prolong its
lifetime.

The competition between radiative and non-radiative decay means that fewer photons
are emitted by a collection of molecules than are absorbed; the quantum yield (Qy; Sec-
tion 3.2) of fluorescence or phosphorescence is less than unity. In addition, during the
lifetime of the excited state, some non-radiative loss of energy generally occurs to the
environment before emission of the bulk of energy as a photon. This results in the energy
of the emitted photon being lower than that of the absorbed photon; fluorescence or
phosphorescence is at longer wavelength than the corresponding excitation. Factors
affecting excitation and emission spectra are discussed more fully in Chapter 2.

While all molecules absorb photons, relatively few fluoresce or phosphoresce
significantly at room temperature, so these latter properties are especially useful for
resolving minor components in complex mixtures. Furthermore, the high sensitivity
of photodetectors and the ability of monochromators or filters to resolve incident from
emitted light makes fluorescence, particularly, an exquisitely sensitive analytical pro-
cedure. Nanogram amounts of fluorophores can usually be assayed fluorimetrically.

2. ABSORBANCE SPECTROPHOTOMETRY
2.1 Types of Spectrophotometer
All spectrophotometers comprise the following elements:

(1) A light source which provides illumination of the appropriate wavelengths. The
most common lamps used are tungsten—halogen, for use between 350 and
900 nm, and deuterium, for the u.v. region (200—400 nm). Arc lamps, either
of xenon or of mercury, usually contain lines of too great an intensity or fluc-
tuate too much to be commonly employed in absorbance spectrophotometers.
(i) A device, usually a monochromator or an optical filter, which selects the precise
wavelength of interest. In most instruments wavelength selection occurs between
the lamp and the sample; in a few instruments, such as the Hewlett-Packard 8450,
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Figure 1. Optical diagram of a single beam spectrophotometer (UVIKON 610/710). PM represents the
photomultiplier tube.

wavelength selection occurs between the sample and the detector (an arrange-
ment described as reversed optics).

(iii) A compartment to house the sample to be studied.

(iv) A detector, usually a photomultiplier or a silicon diode, which measures the
amount of light transmitted by the sample.

Commercially available photometers incorporate all these features in three main con-

figurations.

2.1.1 Single Beam Instruments

These are the simplest type of spectrophotometer. A typical optical diagram of such
an apparatus is shown in Figure 1. The chopper allows light to illuminate the sample
(and the photodetector) intermittently (at a known frequency) and allows the incorpora-
tion of a.c. amplifiers into the electronic circuits. Such amplifiers have a better perfor-
mance than the d.c. devices used if the chopper is omitted. Single beam machines have
a single position for sample and reference material. The apparatus is zeroed and stan-
dardised with the reference material in the sample position and this is then removed
before the sample is studied. Such apparatus is useful for routine assays, for example
those described in Chapter 3, where measurements are required, at a single wavelength,
of samples and standards. The most important requirement in single beam instruments
is that the source output be stable, as changes in transmitted intensity due to variations
in source intensity are not compensated.

2.1.2 Double Beam Instruments

Corrections for variations in source intensity can be made automatically if the excita-
tion beam is divided between reference and sample materials. This is the strategy adopted
by double beam instruments. An optical diagram of such an apparatus is shown in
Figure 2 and a three-dimensional view of the same apparatus is shown in Figure 3.

3
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Figure 2. Optical diagrams of double beam spectrophotometers. (a) UVIKON 810/860 spectrophotometer
with the sample and reference cuvettes in the conventional position. (b) UVIKON 810/860 spectrophotometer
modified for use with turbid samples. Note that the cuvettes are placed much closer to the photomultiplier
(PM) in this configuration.

The essential point is that light of the same wavelength illuminates both the sample
and the reference material. In the system illustrated in Figure 2 the beam is switched
from sample to reference by the chopper; the optics for both the sample and the reference
chambers are focussed onto the same area of the photodetector (to ensure that each
is monitored with the same sensitivity) and a signal from the chopper instructs the elec-
tronics as to whether the sample or the reference position is being interrogated. It is
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