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Abstract

We study the complex geometry and coherent cohomology of nonclassical
Mumford-Tate domains and their quotients by discrete groups. Our focus through-
out is on the domains D which occur as open G(R)-orbits in the flag varieties for
G = SU(2.1) and Sp(4), regarded as classifying spaces for Hodge structures of
weight three. In the context provided by these basic examples, we formulate and
illustrate the general method by which correspondence spaces W give rise to Pen-
rose transforms between the cohomologies H?(D, L) of distinct such orbits with
coefficients in homogeneous line bundles.

Turning to the quotients, representation theory allows us to define subspaces
of HY(I'\D, L) called cuspidal automorphic cohomology, which via the Penrose
transform are endowed in some cases with an arithmetic structure. We demonstrate
that the arithmetic classes assume arithmetic values at CM points in W, up to a
transcendental factor that depends only on the CM type.

The representations related to this result are certain holomorphic discrete series
representations of G(R). We conclude with a discussion of how our framework may
also be used to study the K-types and n-cohomology of (non-holomorphic) totally
degenerate limits of discrete series, and to give an alternative treatment of the main
result of Carayol (1998). These especially interesting connections will be further
developed in future works.
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Introduction

The objective of this work is to study aspects of the automorphic cohomology
groups H1(X. L,) on quotients X = I'\ D by an arithmetic group I" acting on a class
of homogeneous complex manifolds D = Gy /T. Here Gy is the connected real Lie
group associated to a reductive Q-algebraic group G. T' C G is a compact maximal
torus, and p the weight associated to a character of T that gives a homogeneous
holomorphic line bundle L, — D. These D’s may be realized as Mumford-Tate
domains that arise in Hodge theory, and in general we shall follow the terminology
and notations from the monograph [GGK1].! We shall say that D is classical if
it equivariantly fibres holomorphically or anti-holomorphically over an Hermitian
symmetric domain; otherwise it is non-classical, and this is the case of primary
interest in this paper.

In the non-classical case it has been known for a long time that. at least when
[’ is co-compact in Gy,

o HU(X. L,) = 0 for any non-trivial yu:
e when p is sufficiently non-singular.? then

HY(X.,L,)=0, q#q(p+p)
Hrl(u+n)(_){_ L,)#0

where g(p + p) will be defined in the text.
More precisely, for k 2 kg and any non-singular g
dim HIWH0)(X | Ly,) = vol(X) - P, (k)

where P, (k) is a Hilbert polynomial with leading term C,,k‘““‘D where €', > ()
is independent of I'. Thus, in the non-classical case there is a lot of automorphic
cohomology and it does not occur in degree zero. In the classical case, the intensive
study of the very rich geometric, Hodge theoretic. arithmetic and representation
theoretic properties of automorphic forms has a long and venerable history and
remains one of great current interest. In contrast, until recently in the non-classical
case the geometric and arithmetic properties of automorphic cohomology have re-
mained largely mysterious.?

For three reasons this situation has recently changed. One reason is the works
[Gi], [EGW] that give a general method for interpreting analytic coherent cohomol-
ogy on a complex manifold as holomorphic de Rham cohomology on an associated

LCf. the Notations and Terminology section below.

2 Non-singular, or regular, means that ju is not on the wall of a Weyl chamber; sufficiently
non-singular means that p is at a large enough distance |p| from any wall.

3Important exceptions are the works Schmid [Schm1], Williams [Wil], [Wi2], [Wi3], [Wi4],
(Wi5], Wells and Wolf [WW1], (WW2|, [WW3], and Wolf [Wo]|, some of which will be discussed
below. These deal primarily with the representation-theoretic aspects of automorphic cohomology.

1



2 INTRODUCTION

correspondence space W.* In the two examples of this paper, of which a particular
case of the first example is studied in [Gi] and [EGW], the associated space W
will be seen to have a very rich geometric structure and the relevant holomorphic
de Rham cohomology classes will turn out to have canonical representatives. The
upshot is that in the situation of this work automorphic cohomology classes can be
“evaluated” at points of W.

A second reason is the very interesting work [C1], [C2], [C3] of Carayol.® In
the case G = U(2.1), a case already considered in [EGW], Carayol uses the result

in [EGW] applied to a diagram
W
Y\
D D',

where D is non-classical and D’ is classical, to construct a Penrose-type transform

(2) P:H"(D'.L),) —» H'(D.L,)

—_—
—
~

that relates the classical object H(D', L/,,) to the non-classical object H'(D, L,,).
He also shows that (1) and (2) exist on the quotients by T'. For special choices of '
the group H(X'. L:l,) is interpreted as Picard autormorphic forms. The construc-
tion of P is via the commutative diagram (the notations are explained below)

3) HYp(D(W, 03, @ 7' ~1L},)) - == Hbe (T(W. Q5 @ 77 L,,))
I 2l
HY(D.L,)

HO(D', L)

where the vertical isomorphisms are the above mentioned result in [EGW].6

In [C1], [C2] for U(2,1) the dotted arrow above is constructed by explicit
“coordinate calculations”, and one of the main purposes of this paper is to give a
general, intrinsic geometric construction of such maps. More specifically, the dotted
arrow will be seen to be multiplication by the restriction to W C W of a canonical

4For some time it has been known that in certain cases the cohomology group H%(D, Lu)
may be realized as a subspace of the space of holomorphic sections of a holomorphic vector bundle
over the cycle space U (cf. [Schm2], [BE] and [FHW]). Moreover this interpretation descends to
quotients by I". The correspondence space will lie over the cycle space and in a number of ways
appears to be a more fundamental object.

5The authors would like to thank Wushi Goldring for bringing this work to our attention and
for some helpful discussions early in the preparation of this manuscript.

SPenrose transforms associated to the diagram

D/g\u .

where J C D x U is the incidence variety by means of “pull-back and push-down” are classical
and over the years have been the subject of extensive work; cf. [Schm2], [BE], [EWZ], [FHW]
and the references cited therein. The “Penrose-type” transforms we will be discussing in this
paper are somewhat different and have more the flavor of the maps on cohomology induced by
a correspondence in classical algebraic geometry induced by a cycle on the product of the two

(4)

varieties.



INTRODUCTION 3

form

we T(W, QL @ L, 1))

where L(p.j') — W is a homogeneous line bundle over W = G¢ /Tt associated to
the characters p. 4/ and to the relative positions of the Borel subgroups B and B’
associated to D and D’. For the analogous diagram to (3) for a general HY (D'. L)
and H*(D, L,) one has
w= H w®
(8%

where the product is over the positive roots associated to B” which change sign when
they are considered as roots of B, and w® is the dual under the Cartan-Killing form
to the root vector X,. The form w is invariant under the group action and thus the
construction (3) descends to quotients by I'.” As we shall see in section IV.B, the
bottom row of (3) is (in this quotient) replaced by a map between two Lie algebra
cohomology groups induced by “multiplication by X,.”

A third reason is the recent classification [GGK1] of the reductive, Q-algebraic
groups that can be realized as a Mumford-Tate group of a polarized Hodge structure
and the related classification of the associated Mumford-Tate domains D. Although
these domains and their quotients X = I'\D by arithmetic groups arose as target
spaces for period mappings P : S — X where S is a quasi-projective algebraic
variety, it has since emerged that their geometry and the cohomology of homoge-
neous vector bundles over them is of interest in its own right. For the line bundles
L,, — D for which the restriction L,|s is ample, corresponding in the classical case
to automorphic forms but for which in the non-classical case H(X, L u) = 0, the au-
tomorphic cohomology H" (X, L,,), q(j) > 0. seemed a curiosity of no particular
relevance to variations of Hodge structure. It was through the interesting geometry
of Mumford-Tate domains that from a Hodge-theoretic perspective automorphic
cohomology has emerged as an object of interest.

Just how interpreting automorphic cohomology as global holomorphic objects
might be related to period mappings is a matter yet to be explored. More specif-
ically, representation theory and complex geometry associate to I'\ D natural ob-
jects. Except in the classical case, pulling these objects back under P : S — I'\D
generally gives zero. The constructions in this paper suggest a diagram

S—~TI\W

|

S—>T\D,

where S is a complex manifold with dim S = 2dim .S which has a mixed function-
theoretic/algebro-geometric character, and where automorphic cohomology pulls
back naturally to the above diagram. We hope to pursue this further in a future
work.

7One will notice the similarity to the classical Borel-Weil-Bott theorem. This is of course not
accidental and will be discussed below where the form w will be seen to have a representation-
theoretic interpretation; cf. the appendix to section II1.D.



4 INTRODUCTION

In this work we shall especially focus on examples.® One will be the basic
example, essentially P'. Although the most elementary of cases, many of the main
features of the general situation already arise here. The other two will be referred
to as example one and example two. Example one will be the U(2, 1) case; here we
shall use the correspondence space from [EGW] and shall formulate intrinsically
and reprove some of the results from [C1], [C2].? This suggests how the general
case might go. In order to test the validity of this suggestion, we shall work out
our second example of Sp(4). Here, a main step is to construct the correspondence
space W for Sp(4), a construction that turns out to involve the concept of Lagrange
quadrilaterals. In fact, from the two examples it is clear how the Penrose transform
can be defined once one has the correspondence space W in hand. Although there
is now a general construction of W and an analysis of its properties which will be
given in a separate work, we have chosen to here focus on the two examples, in
part because of the very beautiful geometry associated to each and in part because
understanding them points to the way the general case should go.

The term correspondence space arises from the following consideration: The
equivalence classes of homogeneous complex structures on Gg/T are indexed by
the cosets in W/Wpg where W is the Weyl group of G¢ and Wy is the Weyl
group of the maximal compact subgroup K of Gr. We label these as D,, where
w € W/Wg. The correspondence space is then “universal” for maps W — D,, and

leads to diagrams
W
D, D

giving rise to Penrose transforms between H?(D,,, L,)’s and HY (D, L, )'s. In
particular, when one of the D,, is classical, which implies that G is of Hermitian
type. this should lead to an identification of at least some non-classical automorphic
cohomology with a classical object. This insight appears in [C1] and [C2] and is one
hint that automorphic cohomology has a richer structure than previously thought.

We mention that as homogeneous complex manifolds for the complex Lie group
Ge all of the domains D,, have a common compact dual D = G¢ /B where B is a
Borel subgroup. The D,,’s are the Gr-equivalence classes of the open Ggr-orbits in
D. The correspondence space for the compact dual is W = G¢/Te. and W ¢ W
turns out to be an open subset that is somewhat subtle to define.!” In particular,
it scems to be a somewhat new type of object; one that fibres over the cycle space
U, which has many of the characteristics of a bounded domain of holomorphy in
CN. with affine algebraic varieties as fibres. It thus has a mixed complex function
theoretic/algebro-geometric character. As mentioned above, this will be treated in
the separate work [GG]J.

w’

8The main reason for this is that the examples suggest how the general case might go. For
instance, based on this work the general definition and properties of the correspondence space is
given in [GG]. A second reason is that the examples reveal what is to us a very nice geometry.

9As will be explained below, for a given choice of positive Weyl chamber SU(2,1)/Ts and
U(2,1)/T are the same as complex manifolds but are not the same as homogeneous complex
manifolds. For Hodge-theoretic purposes the latter is more important.

109 is sometimes referred to as the “enhanced flag variety” in the representation theory
literature.
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In section II1.C' we shall discuss our basic example, the case of G = SL,. Al-
though it is certainly “elementary”, looking at it from the point of view of the
correspondence space and Penrose transform gives new perspective on this simplest
of cases and already suggests some aspects of what turns out to be the general
mechanism. Of note is the canonical identification of the group H'! (QDI,,, (k)), k=0,
with global holomorphic data: this is a harbinger of a fairly general situation.

The general mechanism was also suggested in part by formulating the calcu-
lations in the setting of mowving frames. The elements of G¢ may be identified as
frames adopted to the geometry of the situation. The points of G¢/T¢ are the
corresponding projective frames, and then the equations of the moving frame and
their integrability conditions, the Maurer-Cartan equations, reveal the computa-
tional framework for the Penrose transform and suggest what the form w above
should be. Interpreting the formulas in terms of the roots of G¢, Gr and the Borel
subgroups B,, corresponding to D, gives the suggested general prescription for w
that was mentioned above.

Associated to a domain is its cycle space U, defined in this paper to be the
set of Ge-translates Z = gZ; of the maximal compact subvariety Z, = K/T that
remain in the open domain D € D. There is a comprehensive treatment of cycle
spaces in [FHW]. where they give a more general definition of the cycle space. It
is known (loc. cit.) that in the non-classical case

UcU:=Ge/Ke

where U is an open Stein domain in the affine algebraic variety U.'' There is the
incidence diagram (4) but J is not Stein so the [EGW] method does not apply
to this picture.'? There is however a surjective map W — U where, in first ap-
proximation, the fibre lying over a point in U corresponding to Z = K/T C D is
the correspondence space K¢ /Tr for the homogeneous projective variety Z. For
instance, in both the examples we shall consider we will have Z = P! and the
corresponding fibre will be P! x P!\ {diagonal}. In some sense one may think of
W as a common Stein refinement of the cycle spaces U,, for all the domains D,,, a
refinement to which the methods of [EGW] apply for all the D,,’s.!3

The cycle spaces will enter in an essential way in the proof of the injectivity
of the Penrose transform for certain ranges of p and /. Basically, the idea is that
non-injectivity leads to an equation

(5) Fw=d,G

where G is a holomorphic section of a line bundle L(u.u') — W. The equation
(5) gives differential restrictions on G, and with these it is shown that G lives on a
quotient variety J of W and that J is covered by the lifts Z of compact subvarieties
Z C D. Then is is shown that for the range of weights p of interest and for all such
Z the restriction

G|, =0.

z

HThe substantive statements here are (i) that K¢ = {g € G : gZo = Zo}, (ii) that U is
Stein, and (iii) U is Kobayashi hyperbolic.

12As noted above, it is this picture to which much of the classical literature on Penrose
transforms, given by “pull-back and push-down”, pertains.

131t is a non-trivial consequence of Matsuki duality that the 1, are all the same open set
in Ul = G'c/Ke, but the compact subvarieties of D,, parametrized by U,, are different. This
universality property, which is closely related to Matsuki duality, will play an important role in
the subsequent definition and analysis of the properties of W given in [GG].
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Since J is covered by the Z’s, this implies that G = 0.1

As mentioned above one primary objective of this work is to formulate and illus-
trate the general method of Penrose-type transforms. A second objective is to use
this method to define and derive results about one arithmetic aspect of automorphic
cohomology. Informally stated. the result is that, up to a transcendental factor that
depends only on the CM type. arithmetic automorphic cohomology classes assume
arithmetic values at CM points in 'W.

To explain this, a first observation is that the compact dual D is a homogeneous,
rational projective variety defined over a number field &. We shall say that a
complex vector space V' has an arithmetic structure in case there is a number field
L with an embedding L < C together with an L-vector space V;, € V such that
V = C®p Vi, In all cases considered below the arithmetic structures will be
natural in a sense that we hope will be clear from the context. For example, for
any number field L O k, at an L-rational point of D the fibres of G¢-homogeneous
vector bundles that are defined over & will have a natural arithmetic structure.

A second type of arithmetic structure arises when we realize D as a Mumford-
Tate domain. There are then defined the set of complex multiplication, or CM,
points ¢ € D. The action of the CM field L, on the fibres at ¢ of the Hodge bundles
then gives an arithmetic structure to these vector spaces. A basic result [GGK1]
is that this arithmetic structure is comparable with the previously mentioned one
for ¢ € D, in the sense that there is a number field L' with & ¢ L', L, € L' and
such that when tensored with L’ these two arithmetic structures coincide.

In our two examples, via the Penrose transform with the resulting natural
isomorphism of the images of cuspidal automorphic forms'?

(6) HYX.L,) = H)(X'.L,)
an arithmetic structure on the RHS will induce one on the LHS. For the U(2,1)
and Sp(4) examples and for a special choice of i/, the RHS consists of cuspidal
Picard, respectively Siegel modular forms. If H = T\H =: Y is the quotient of the
Hermitian symmetric domain H to which X’ maps, then the RHS is the cuspidal
subspace of H(Y, w?l/‘g).

It is known that Y has a canonical model. which is a projective variety defined

: . . : , , ®1/3 ;
over a number field k with homogencous coordinate ring & H”(Y.w‘f, / ) that is
120
: . 16 : 00y ®A/3y . 0y, ,®U/3 X
defined over k. The vector space H"(Y (k).w,.(k)) = H(Y.wy ")k are the

modular forms of weight | defined over k. For y € Y (k) a k-rational point, the fibre
wy,y of C@p wy (k)4 at y is defined over k, and if ¢» € HO(Y, w%o-l/'s)k then the value

®1/3
U(y) € wf’({<),1/ .

4 This method will not apply to W itself since, being Stein, it contains no compact sub-
varieties. In order for it to apply we must quotient W on the right by parabolic subgroups FPr
with T € Py € Kg. The roots of Pr are the ones that appear in the definition of the form
w mentioned above. Again, it is the examples discussed in this paper that suggest the general
mechanism. These extensions are currently under investigation by a number of people.

I5Cf. section IV.A for the notation and terminology. For I' C G co-compact, the subscript
“0" may be dropped on both sides.

16 For the examples considered in this work, the boundary components of Y in the Baily-Borel
compactification will have codimension at least two, so finiteness conditions at the cusps are not
necessary.
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In our two examples, H will be realized as a Mumford-Tate domain and the
notion of a CM point h € H is well-defined. As noted above, the fibres F) of
the Hodge bundles F¥ — H then have an arithmetic structure, so that there is
a number field L and an L-vector space Fy , C Fy with F, = C @, F) ;. The
canonical bundle wy is constructed from the Hodge bundles, and therefore at a
CM point h we have w',/,l,/ljl C w,ﬁlzi A classical result [Shi] is that there is a fived
transcendental factor A € (C*/@* that depends only on the CM field associated to
h. together with a choice of positive embeddings of the field, and a finite extension
L' > L such that for ¢ € H“(Y.w;}’/;;)k

A~ p)(h) € B3, .
In other words, in the sense just explained up to the factor A arithmetic automor-
phic forms assume arithmetic values at CM points.

Using the isomorphism (6), for suitable characters ;1 we may define an arith-
metic structure on the cuspidal automorphic cohomology group H!(X, L,). Us-
ing the [EGW] method we may then evaluate an automorphic cohomology class
a € H)(X.L,) in the fibres of bundles at w € W constructed from the Hodge
bundles. At a CM point of W these vector spaces have arithmetic structures, and
our result (IV.D.3) is that at such a point w whose CM structure is compatible with
that on its image ¢ € H, up to a fived transcendental factor as above the value
a(w) is arithmetic. Moreover, these points are dense in the analytic topology.!”

We remark that this work is one dealing primarily with the complex geometry
and coherent cohomology of Mumford-Tate domains and their quotients by discrete
groups. It is written from the perspective of the geometry of a class of interesting
locally homogeneous complex manifolds that independently arise from Hodge theory
and from representation theory. The deeper geometric and cohomological aspects
of representation theory are treated here only superficially. We refer to the paper
[Schm3] for an exposition of some of these aspects that will be used in the sequel
to this paper [GG] where the general properties of correspondence spaces will
be discussed. We also refer to the introduction to [CK] for a lucid overview of
some related aspects of arithmetic automorphic representation theory and the role
of TDLDS’s in this theory.!® One of our main points is that different coherent
cohomology groups may be associated to the same representation, either finite

17"We remark that a geometrically more natural “evaluation” of automorphic cohomology
classes in H(%(X, L;) would be to classes in H! (’3 OS(L,L))

S=I'snNH

where H{ C D is an equivariantly embedded copy of the upper half plane H = SL3(R)/SO(2)
arising from an inclusion SLy(Q) < G and I'g = I'MSL2(Q) is an arithmetic group. The notation
“S" stands for Shimura curve. In general, equivariantly embedded Hermitian symmetric domains
in non-classical Mumford-Tate domains have independently arisen from a number of perspectives
([FL], [R] and the above) and would seem to be objects worthy of further study. Some comments
about this issue will be given in the forthcoming CBMS volume [GGKZ2]. In a related vein,
[KP] using the framework in this paper has given a general setting and extension of results in
[C3], which in particular provide another definition for arithmeticity of automorphic cohomology
classes.

18As will be noted below, there is a to us striking similarity between the groups
H‘i(r\ D,L_,), where HY(D, L._,) is the Harish-Chandra module associated to a TDLDS, and to
special divisors of degree g— 1 on an algebraic curve of genus g. In both cases, Euler characteristics
are zero and deeper methods must be used to get at the geometry.
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dimensional of G¢ in the compact case or infinite dimensional of G in the non-
compact case (including both Gr/T’s and I'\Ggr/T"s). and that in some generality
the connection between these different manifestations may be realized geometrically.
Although we here have informally mentioned some of these general results, for the
reasons stated above we have in this work focused on our examples.

It is the authors’ pleasure to thank Sarah Warren for a marvelous job of con-
verting an at best barely legible handwritten manuscript into mathematical text.

Outline

The following is an outline of the contents of the various sections of this paper.

We begin in section LA with a general discussion of the homogeneous complex
manifolds that will be considered in this work. Here. and later, we emphasize the
distinction between equivalence of homogenous complex manifolds and homogeneous
vector bundles over them, rather than just equivalence as complex manifolds and
holomorphic vector bundles.

In section I.B we discuss our first example, which is the non-classical complex
structure on W(2,1)/7T := D, realized as one of the three open orbits of U(2,1)
acting on the homogeneous projective variety of flags (0) ¢ Fy € F, C F3 = C3
where dim F; = i. Here C? has the important additional structure of being the
complexification of F? where F = Q(v/—d) is a quadratic imaginary number field.
It is this additional structure that leads to the realization of D as a Mumford-Tate
domain, thereby bringing Hodge theory into the story. The other two open Gg-
orbits D’ and D" are classical and may also be realized as Mumford-Tate domains,
or what is more relevant to this work, the set of Hodge flags asssociated to Mumford-
Tate domains consisting of polarized Hodge structures of weight one with additional
structure.

All three of the above domains have three descriptions: geometric, group-
theoretic and Hodge-theoretic. The interplay between these different perspectives
is an important part of the exposition. Especially important is the book-keeping
between the tautological, root and weight. and Hodge theoretic descriptions of the
U(2, 1)-homogeneous line bundles over the domains, which is given in section I1.B.

In our first example the three domains may be pictured as

[

P

P

B L

FIGURE 1
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where B is the unit ball in C?> ¢ P? defined by the Hermitian form with matrix
diag(1.1 —1) and

Il

(p. 1)}
(P.1)}
(p.L)} -

All of thse domains are quotients of the correspondence variety W given by the set
of configurations

D ={
D =
DII {

P

)

FIGURE la
Correspondence varieties play a central role in the theory.'”
Although it will not be needed for the present work, we mention that three
other non-open orbits of the action of Gr on the flag manifold may be pictured as

p

19%We observe that W may be described as the set of projective frames (p,p. P) in the above
figure; this is a general phenomenon. We note that W is an open domain in the set W = G¢ /Tt,
which is the enhanced flag variety. As noted in the introduction, motivated by the examples below
is a general phenomenon as will be proved in [GG].



10 INTRODUCTION

where the third is the unique closed orbit. These and their Mutsuki dual K¢-orbits
will play a central role in the sequel.?’

The second example is the non-classical complex structure on Sp(4,R)/T := D
where D is realized as the period domain of polarized Hodge structures of weight
n = 3 and with all Hodge numbers 7?7 = 1, an example that arises in the study
of the mirror-quintic Calabi-Yau varieties. In this case there are four inequivalent
complex structures, of which two, the D mentioned above and one classical one D',
will play important roles in this work. Again, the three descriptions — geometric,
group-theoretic and Hodge-theoretic and their interplay are important in this
work.

The geometric description of the domains D and D’ will be given by configu-
rations

(1,1)

f P <0
FI1GURE 2
where

D = {(p. E")}
D' ={(p.E)}.

Here we are given a non-degenerate alternating form (Q and conjugation o on a
four dimensional complex vector space V with P? = PV. The form Q defines the
Hermitian form H(u,v) = iQ(uw.ov). In the above figure, F and E’ are Lagrange
lines and the (1.1) and < 0 denote the signature of H restricted to them. The

20In the above example the pictured orbits in @D will be seen to have Hodge-theoretic
significance in terms of the Kato-Usui theory [KU] of limiting mixed Hodge structures and in
representation theory where the TDLDS is constructed by parabolic inductions from the unique
closed Gg-orbit given by the third figure above (cf. [KP] and [GGK2]).



