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PREFACE

The majority of scientists, mathematicians and engineers must consult reference books containing information
on a variety of functions. This is because all but the most mundane quantitative work involves relationships that are
best described by mathematical functions of various complexities. Of course, the need will depend on the user, but
most will require information about the general behavior of the function in question and its mathematical properties,
as well as its numerical values at a number of arguments.

The first edition of An Atlas of Functions, the product of collaboration between a mathematician and a chemist,
appeared during an era when the programmable calculator was the workhorse for the numerical evaluation of
functions. That role has now been taken over by the omnipresent computer, and therefore the second edition
delegates this duty to Equator, the Atlas function calculator. This is a software program that, as well as carrying
out other tasks, will calculate values of over 200 functions, mostly with 15 digit precision. There are numerous other
improvements throughout this new edition but the objective remains the same: to provide the reader, regardless of
his or her discipline, with a succinct compendium of information about all the common mathematical functions in
use today.

While relying on Equator to generate exact numerical values, the Atlas of Functions describes each function
graphically and gives ready access to the most important definitions, properties, expansions and other formulas that
characterize it, and its relationship to other functions. As well, the utility of the A#/as is enhanced by the inclusion
of sections that briefly discuss important topics related to specific functions; the new edition has many more such
sections. The book is organized into 64 chapters, each of which is devoted to one function or to a family of closely
related functions; these appear roughly in order of increasing complexity. A standard format has been adopted for
each chapter to minimize the effort needed to locate a sought item of information. A description of how the chapters
are sectioned is included as Chapter 0. Several appendices, a bibliography and two comprehensive indices complete
the volume.

In addition to the traditional book format, an electronic version of An Atlas of Functions has also been produced
and may even be available through your library or other information center. The chapter content of the paper and
electronic editions is identical, but Equator, the Atlas function calculator is not included in the latter. The Equator
CD is included with the print version of the book, and a full description of the software will be found in Appendix C.
Because Equator is such a useful adjunct to the Ar/as, stand-alone copies of the Equator CD have been made widely
available, through booksellers and elsewhere, primarily for the benefit of users of the electronic version of the At/as.

Though the formulas in the A#/as and the routines in Equator have been rigorously checked, errors doubtless
remain. If you encounter an obscurity or suspect a mistake in either the Atlas or Equator, please let us know at

v
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koldham@trentu.ca, jmyland@trentu.ca or jspanier@uci.edu. An Errata ofknown errors and revisions will be found
on the publisher’s website; please access www.springer.com/978-0-387-48806-6 and follow the links. This will be
updated as and if new errors are detected or clarifications are found to be needed. Use of the Atlas of Functions or
Equator, the Atlas function calculator is at your own risk. The authors and the publisher disclaim liability for any
direct or consequential damage resulting from use of the At/as or Equator.

It is a pleasure to express our gratitude to Michelle Johnston, Sten Engblom, and Trevor Mace-Brickman for
their help in the creation of the A#/as and Equator. The frank comments of several reviewers who inspected an early
version of the manuscript have also been of great value. We give sincere thanks to Springer, and particularly to Ann
Kostant and Oona Schmid, for their commitment to the lengthy task of carrying the concept of An Atlas of Functions
through to reality with thoroughness, enthusiasm, skill, and even some humor. Their forbearance in dealing with
the authors is particularly appreciated.

We hope you will enjoy using An Atlas of Functions and Equator, and that they will prove helpful in your work
or studies.

January 2008 Keith B. Oldham
Jan C. Myland
Jerome Spanier
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CHAPTER

0

GENERAL CONSIDERATIONS

Functions are operators that accept numbers as input and generate other numbers as output. The simplest kinds
receive one number, usually named the argument, and produce another number, called the value of the function

0:0:1 argument —=*|function|—=2% > value

Functions that need only one argument to trigger an output are univariate functions. Bivariate functions require
two input numbers; one of these two variables generally retains the name “argument”, whereas the second variable
goes by another name, such as order, index, modulus, coefficient, degree, or parameter. There are also trivariate,
quadrivariate, and even multivariate functions. Likewise certain functions may give multiple outputs; the number
of such output values may be finite or infinite. Such multivalued functions are often conventionally restricted to
deliver a single output, a so-called principal value, and this is the standard used in the A#/as.

In this chapter are collected some considerations that relate to all, or most, functions. The general organization
of the Atlas is also explained here. Thus, this could be a good starting point for the reader. However, the intent of
the authors is that the information in the 4A#/as be immediately available to an unprepared reader. There are no
special codes that must be mastered in order to use the book, and the only conventions that we adopt are those that
are customary in scientific writing.

Each chapter in the A#/as is devoted to a single function or to a small number of intimately related functions.
The preamble to the chapter exposes any such relationships and introduces special features of the subject function.

0:1 NOTATION

The nomenclature and symbolism of mathematical functions are bedeviled by ambiguities and inconsistencies.
Several names may attach to a single function, and one symbol may be used to denote several functions. In the first
section of each chapter the reader is alerted to such sources of possible confusion.

For the sake of standardization, we have imposed certain conventions relating to symbols. Though this has
meant sometimes adopting unfamiliar notation, each function in the A#/as has its own unique symbol, as listed in
the Symbol Index. We have eschewed boldface and similar typographical niceties for symbolizing functions on the
grounds that they are difficult to reproduce by pencil on paper. We reserve the use of italics to represent numbers
(such as function arguments, x (or y); constants, ¢; and coefficients, a,, a,, a;, **, a,) and avoid their use in
symbolizing functions. When a variable is necessarily an integer it is represented by » (or m), rather than x, and

K.B. Oldham et al., An Atlas of Functions, Second Edition, 1
DOI 10.1007/978-0-387-48807-3 1, © Springer Science+Business Media, LLC 2009



2 GENERAL CONSIDERATIONS 0:2

often appears subscript following the function’s symbol, instead of within parentheses. Variables that are often
integers, but are not necessarily so, are represented by v (or p). Arguments that are frequently interpreted as angles
may be represented by 0 (or ¢). Occasionally, as in Chapter 64, some symbol other than x is used unexpectedly to
represent the variable, x being reserved to serve as the argument of a more general function. For the same reason,
we may avoid using “argument” as the name of the variable in such cases. Notice that a roman f symbol is used to
represent an arbitrary function, or as a stand-in for a group of specified function symbols, but the italic /is employed
to signify the numerical value of f(x) corresponding to a specific x. Thus the axes of cartesian graphs may be labeled
x and £, rather than the customary x,y found in texts dealing with analytical geometry.

We generally avoid the use of primes to represent differentiation but, where they have become part of the
established symbolism, as in Section 52:7 and Chapter 56, this usage is followed. Elsewhere a notation such as '
merely connotes “another f”.

In Sections 46:14 and 46:15, the z symbol serves as a cartesian coordinate. Elsewhere the symbol z is reserved
to denote a complex variable equal to x+iy. All other variables are implicitly real, unless otherwise noted.

The names of most functions end with the word “function” (the error function, the Hurwitz function), but three
other terminal words are commonly encountered. Some univariate functions that accept, exclusively or primarily,
integer arguments are called “numbers” (Fibonacci numbers, lambda numbers); a few bivariate functions are named
similarly (Stirling numbers). Functions defined as power series of finite length generally take the name
“polynomials” (Chebyshev polynomials, exponential polynomial). The word “integral” often ends the name of
functions that are defined as integrals (hyperbolic cosine integral, Dawson’s integral). Yet other functions have
unique names that don’t fit into the general pattern (dilogarithm, binomial coefficient). Adjectives relate some
functions to a parent function (associated Laguerre function, incomplete gamma function, auxiliary Fresnel integral).
An index of function symbols will be found following the appendices, while the names of all our functions are
included in the Subject Index that concludes the A#/as.

0:2 BEHAVIOR

This section reveals how the function changes in value as its variables change, thereby exposing the general
“shape” of the function. This information is conveyed by a verbal description, supplemented by graphics.

There are several styles of figure that amplify the text in Sections 2 and elsewhere. The first is a cartesian line-
graph of the function’s values fplotted straightforwardly versus its argument x. Frequently there are several lines,
representing different functions, plotted in different colors on the same graph. The second style of figure,
particularly suitable for bivariate functions, is a three-dimensional orthographic view of the surface, showing how
the function varies in magnitude as each of the variables changes over a restricted range. Pairs of such graphics are
often used in Sections 11 to represent the real and imaginary parts of complex-valued functions. Not infrequently,
complex-valued functions are inherently multivalued and, to convert such a function into a single-valued counterpart,
it is necessary to “cut” the surface; such a cut appears as a grey “cliff” on the three-dimensional figure. Our three-
dimensional graphics are colored, but the color plays only a subsidiary role. Some bivariate functions have
discontinuities, such as a sudden change in value from +o to —oo, and when there are several of these, three-
dimensional figures become so confused as to be unhelpful. In these circumstances, we sometimes resort to a third
style of graphic, that we call a projection graph. In this perspective representation, a three-dimensional image is
combined with a two-dimensional display, the axes of which correspond to two variables, with color being used to
indicate the magnitude of the function at each point in the rectangular space. With trivariate and quadrivariate
functions, graphical representation ceases to be useful and the behaviors of such functions may be described in this
Atlas without the aid of graphics. You will encounter figures of other kinds, too, each designed to be helpful in the
local context.
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Some functions are defined for all values of their variable(s), from oo to +oo.
For other functions there are restrictions, such as -1 <x < 1 or n=1,2,3,--, on those
values that specify the domain of each variable and thereby the range of the function. first s 4
Likewise, the function itself may be restricted in range and may be real valued,
complex valued, or each of these in different domains. Such considerations are
discussed in the second section of each chapter. In this context, the idea of gquadrants txird _ _
is sometimes useful. Borrowed from the graphical representation of the function f;,
this concept facilitates separate discussion of the properties of a function f according
to the signs of x and £ as in the table.

Quadrant X

second - -

fourth + =

0:3 DEFINITIONS

Often there are several formulas relating a function to its variable(s), although they may not all apply over the
entire range of the function. These various interrelationships are listed in the third section of each chapter under the
heading “Definitions” even though, from a strictly logical viewpoint, some might prefer to select one as the unique
definition and cite the others as “equivalences” or “representations”.

Several types of definition are encountered in Sections 3. For example, a function may be defined:

(a) by an equation that explicitly defines the function in terms of simpler functions and algebraic operations;

(b) by a formula relating the function to its variable(s) through a finite or an infinite number of arithmetic or
algebraic operations;

(c) as the derivative or indefinite integral of a simpler function;

(d) as an integral transform of the form

0:3:1 ftx)= ].g(x,t)dt

fo

where g is a function having one more variable than f, #, and ¢, being specified limits of integration;
(e) through a generating function, G(x,f), that defines a family of functions f;(x) via the expansion

0:3:2 G(x.0)=2 f,(x) g,(1)

where g (7) is a simpler set of functions such as #/;

(f) as the inverse of another function F(x) so that the implicit equation

0:3:3 F(f(x))=x

is used to define f(x) [this is graphically equivalent to reflecting the function F(x) in a straight line of unity slope
through the origin, as elaborated in Section 14:15];

(g) as a special case or a limiting case of a more general function;

(h) parametrically through a pair of equations that separately relate the function f(x) and its argument x to a third
variable; '
(1) implicitly via a differential equation [Section 24:14], the solution (or one of the solutions) of which is the subject
function;

(j) through concepts borrowed from geometry or trigonometry; and

(k) by synthesis, the application of a sequence of algebraic and differintegration [Section 12:14] operations applied
to a simpler function, as described in Section 43:14.
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0:4 SPECIAL CASES

If the function reduces to a simpler function for special values of the variable(s), this is noted in the fourth
section of each chapter.

0:5 INTRARELATIONSHIPS

An equation linking the two functions f(x) and g(x) is an interrelationship between them. In contrast, one speaks
of an intrarelationship if there is a formula that provides a link between instances of a single function at two or more
values of one of its variables, for example, between f(x,) and f(x,). In this A7/as intrarelationships will be found in
Section 5 of each chapter, interrelationships mainly in Sections 3 and 12.

An equation expressing the relationship between f(-x) and f(x) is called a reflection formula. Less commonly
there exist reflection formulas relating f(a-x) to f(a+x) for nonzero values of a.

A second class of intrarelationships are translation formulas; these relate f(x+a) to f(x). The most general
translation formula, in which a is free to vary continuously, becomes an argument-addition formula that relates
f(x+y) to f(x) and f(y). However, many translation formulas are restricted to special values of a such as a =1 or
a = nm; the relationships are then known as recurrence relations or recursion formulas. Such relationships are
common in bivariate functions; a recursion formula then normally relates f(v, x) to f(v -1, x) or to both f(v -1, x)
and f(v-2,x). A very general argument-addition formula is provided by the Taylor expansion (Brook Taylor,
English mathematician and physicist, 1685 -1731):

df = At x d&f
0:5:1 f(yix)—f(y)ixdx(y)+2!(hf2(y)-l_-3!dx3
Expressions for the remainder after this series is truncated to a finite number of terms are provided by Abramowitz
and Stegun [Section 3.6], and by Jeffrey [page 79].

A third class of intrarelationships are argument-multiplication formulas that relate f(nx) to f(x). More rarely
there exist function-multiplication formulas or function-addition formulas that provide expressions for f(x) f(y) and
f(x) + f(y), respectively.

Yet other intrarelationships are those provided by finite and infinite series. With bivariate and multivariate
functions there may be a great number of such formulas, and functions other than f may be involved.

r)=s

0:6 EXPANSIONS

The sixth section of each chapter is devoted to ways in which the function(s) may be expressed as a finite or
infinite array of terms. Such arrays are normally series, products, or continued fractions.
Notation such as

0:6:1 f(x)= ig,(x)

is used to represent a convergent infinite series, where g is a function of j and x. Unless otherwise qualified, 0:6:1
implies that, for values of x in a specified range, the numerical value of the finite sum

0:6:2 go()+g (x)+g,(x)+---+g,;(x)+---+g,(x)

can be brought indefinitely close to f(x) by choosing J to be a large enough integer.
Frequently encountered are convergent series whose successive terms, for sufficiently large j, decrease in
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magnitude and alternate in sign. We shall loosely call such series alternating series. A valuable property of such
alternating series enables the remainder after a finite number of terms are summed to be estimated in terms of the
first omitted term. When Z(—)jgj (x) is used to represent an alternating series, this result:

0:6:3 > (e, X () g, (0| <[, )

plays an important role in the design of many algorithms.
In contrast to 0:6:1, the symbolism

0:6:4 f(X)NZg,-(X) F=0,1,2 4 J X — 0
|

which is reserved for asymptotic series, implies that, for every J, the numerical value of 0:6:2 can be brought
indefinitely close to f(x) by making x, not J, sufficiently large. It is this restriction on the magnitude of x that makes
an asymptotic expansion, though of great utility in many applications, rather treacherous for the incautious user [see
Hardy].

If the function g (x) in 0:6:1 or 0:6:4 can be written as the product cjx‘“pf, where ¢, is independent of x while
o and P are constants, then the expansions 0:6:1 and 0:6:4 are called Frobenius series (Ferdinand Georg Frobenius,
Prussian mathematician, 1849-1917). In the case of an asymptotic series, [ is often negative. When e =0 and f =
1, the name power series [Section 10:13] is used if the series is infinite, or polynomial [Chapter 17] if it is finite.

The infinite product notation

0:6:5 f(x)= f[g ()

implies that the numerical value of the finite product
0:6:6 0 (%)g,(¥)g,(x) g, (x)

approaches f(x) indefinitely closely as J takes larger and larger integer values.
The notation

o &, O, o
+ 3
BI+ Bz+ B3+B4+"'

is a standard abbreviation for the continued fraction

Py +

0:6:7 Bo

o,

o,
L 2
0:6:8 P a,
B, +
Q.4

B3+B4+...

in which each «; and ; may denote constants or variables. A continued fraction may serve as a representation of
some function f(x). Continued fractions may be infinite, as denoted in 0:6:7, or finite (or “terminated”):

e Oy Oy B ¥

Bi+ B+ B+ B+ By
though the former are most common in this At/as. Of great utility in working with continued fractions is the
equivalence

0:6:9 Bo

B+ B, + Bs+ B, ’ VB + YaBy + viBs + A8

0610 B o 0(‘1 aZ a} aﬂ =g Ylal YlYZQ’Z y2y3a‘3 T YII—IYna)1
0. 0
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In what we shall call the “standard” form of a continued fraction, the variable x appears only in the numerators, that
is, only in the o portions of 0:6:9. However, other forms exist in which x is part of B, or both & and B, as in the left-

hand side of the identity
! YoX VX Y2 X . VX :-1_+L+ £ g +x—"
Yo— Vh+X— Yo+ X— Y3 +x—  Y,+X Yo Yo¥i YoViY2 Yo¥i¥a Y,

which demonstrates the interchangeability of continued fractions and polynomials. Lozenge diagrams [Section
10:14] can facilitate such as interchange.

0:6:11

0:7 PARTICULAR VALUES

If certain values of the variable(s) of a function generate noteworthy function values, these are cited in the
seventh section of each chapter, often as a table. The entry “~oo[+c0” in such a table, or elsewhere in the Atlas, or
in the output of Equator, implies that the function has a discontinuity and, moreover, that at an argument slightly
more negative than the argument in question, the function’s value is large and negative; whereas, at an argument
slightly more positive, the function is large and positive. Entries such as “+oo|+00” similarly provide information
about the sign of the function’s value on either side of a discontinuity.

In Section 7 of many chapters we include information about those arguments that lead to inflections, minima,
maxima, and particularly zeros of the subject function f(x). The term extremum is used to mean either a local
maximum or a local minimum.

An inflection of a function occurs at a value of its argument at which the second derivative of the function is
zero; that is:

0:7:1 jx——g(xi) =0 f(x,) = inflection of f(x)
A local minimum and a local maximum of a function are characterized respectively by
df d*f
T2 —(x,)=0, —(x,)>0 f(x,,) = minim ff
dx(m) dx‘(x') (x,,) = minimum of f (x)
and
df d*f .
0:7:3 Ex—(XM) =0, F(XM)<O f(x,,) = maximum of f(x)

A zero of a function is a value of its argument at which the function vanishes; that is, if
0:7:4 f(r)=0 then r=azerooff(x)

Equivalent to the phrase “a zero of f(x)” is “a root of the equation f(x) = 0.” A double zero or a double root occurs
at a value r of the argument such that

0:7:5 f(r)=%f(r):0 r =a double zero of f(x)
X

The concept extends to multiple zeros or repeated roots; thus, if

df d'f
0:7:6 L) = ) = reer= e =

A value r of x that satisfies 0:7:4 but not 0:7:5 corresponds to a simple zero or a simple root. The graphical
significance of a root, a maximum, a minimum, and an inflection, is evident from Figure 0-1.

(r)=0 r =a zero of f(x) of multiplicity n+1
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0:8 NUMERICAL VALUES

Very few tables of numerical values are found in the A#/as because the compact disk that accompanies the print
edition of this book is designed to obviate that need. As described in Appendix C, the disk provides access to
Equator, the Atlas function calculator. As well as carrying out certain other tasks, Equator is able to calculate the
numerical values of over two hundred mathematical functions.

The computational methods employed by Equator are so diverse and interconnected that it is impractical to
present the code or algorithms. Nevertheless, the mathematical basis of the calculations is explained in Section 8
of the relevant chapter. Generally, Section 8 reveals the domain(s) of the variable(s) within which Equator operates
but the user must appreciate that not all of the variable combinations that lie within these domains will necessarily
generate a function value. For a variety of reasons, including overflow or underflow during a computation, or an
inadequacy of residual precision at some stage of the calculation, no numerical output may be possible. Our goal
is that any answer generated be significant to the number of digits cited in the output. See Appendix C for further
information about Equator.

0:9 LIMITS AND APPROXIMATIONS

Often, as the argument or another variable of the function approaches a particular number, such as zero or
infinity, its behavior comes to approximate that of some simpler function as a limit. Such instances are noted in
Sections 9, either verbally or with the help of an equation. The symbol = indicates approximate equality.

Limiting behaviors can often serve as valuable approximations, and these may be presented in Sections 9.
Whenever some approximation, not necessarily arising from a limit, is particularly noteworthys, it is reported in this
section, too. The symbol — is used to indicate approach.

0:10 OPERATIONS OF THE CALCULUS

Some of the most important properties of functions are associated with their behavior when subjected to the
various operations of the calculus. Accordingly, the tenth is often one of the largest sections of a chapter.



