Volume 1

SINGLE VARIABLE

Calculus

James Stewart 5e

calculus Calculus

fifth edition

Volume 1: Chapters 1-6

JAMES STEWART
McMaster University

THOMSON

Mathematics Editor • Bob Pirtle

Assistant Editor - Stacy Green

Editorial Assistant · Jessica Zimmerman

Technology Project Manager - Earl Perry

Marketing Manager - Karin Sandberg

Marketing Assistant • Stephanie Taylor

Advertising Project Manager = Bryan Vann

Project Manager, Editorial Production • Kirk Bomont

Print/Media Buyer - Jessica Reed

COPYRIGHT © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.

ALL RIGHTS RESERVED. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including but not limited to photocopying, recording, taping, Web distribution, information networks, or information storage and retrieval systems—without the written permission of the publisher.

Printed in the United States of America

1 2 3 4 5 6 7 06 05 04

For more information about our products, contact us at:
Thomson Learning Academic Resource Center
1-800-423-0563

For permission to use material from this text or product, submit a request online at http://www.thomsonrights.com.

Any additional questions about permissions can be submitted by email to thomsonrights@thomson.com.

COPYRIGHT © 2003 Thomson Learning, Inc. All Rights Reserved. Thomson Learning $WebTutor^{TM}$ is a trademark of Thomson Learning, Inc.

Trademarks

Derive is a registered trademark of Soft Warehouse, Inc. Journey Through is a trademark used herein under license. Maple is a registered trademark of Waterloo Maple, Inc. Mathematica is a registered trademark of Wolfram Research, Inc. Tools for Enriching is a trademark used herein under license.

Credits continue on page A81.

ISBN 0-534-49676-8

Production Service - TECH-arts of Colorado, Inc.

Interior Design - TECH-arts of Colorado, Inc.

Copy Editor | Kathi Townes

Interior Illustration - Brian Betsill

Cover Designer - Denise Davidson

Cover Image · Bill Ralph

Cover Printer - Lehigh Press

Compositor • Stephanie Kuhns

Printer • Quebecor World-Versailles

Thomson Brooks/Cole 10 Davis Drive Belmont, CA 94002

USA

Asia

Thomson Learning 5 Shenton Way #01-01 UIC Building Singapore 068808

Australia / New Zealand

Thomson Learning 102 Dodds Street Southbank, Victoria 3006 Australia

Canada

Nelson

1120 Birchmount Road Toronto, Ontario M1K 5G4 Canada

Europe/Middle East/Africa

Thomson Learning High Holborn House 50/51 Bedford Row London WC1R 4LR United Kingdom

Latin America

Thomson Learning Seneca, 53 Colonia Polanco 11560 Mexico D.F. Mexico

Spain/Portugal

Paraninfo Calle/Magallanes, 25 28015 Madrid, Spain

PREFACE

A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery.

GEORGE POLYA

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to write a book that assists students in discovering calculus—both for its practical power and its surprising beauty. In this edition, as in the first four editions, I aim to convey to the student a sense of the utility of calculus and develop technical competence, but I also strive to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly experienced a sense of triumph when he made his great discoveries. I want students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that this should be the primary goal of calculus instruction. In fact, the impetus for the current calculus reform movement came from the Tulane Conference in 1986, which formulated as their first recommendation:

Focus on conceptual understanding.

I have tried to implement this goal through the *Rule of Three*: "Topics should be presented geometrically, numerically, and algebraically." Visualization, numerical and graphical experimentation, and other approaches have changed how we teach conceptual reasoning in fundamental ways. More recently, the Rule of Three has been expanded to become the *Rule of Four* by emphasizing the verbal, or descriptive, point of view as well.

In writing the fifth edition my premise has been that it is possible to achieve conceptual understanding and still retain the best traditions of traditional calculus. The book contains elements of reform, but within the context of a traditional curriculum. (Instructors who prefer a more streamlined curriculum should look at my book *Calculus: Concepts and Contexts, Second Edition.*)

What's New in the Fifth Edition

By way of preparing to write the fifth edition of this text, I spent a year teaching calculus from the fourth edition at the University of Toronto. I listened carefully to my students' questions and my colleagues' suggestions. And as I prepared each lecture I sometimes realized that an additional example was needed, or a sentence could be clarified, or a section could use a few more exercises of a certain type. In addition, I paid attention to the suggestions sent to me by many users and to the comments of the reviewers.

The structure of Single Variable Calculus, Fifth Edition, remains largely unchanged, but there are hundreds of improvements, small and large:

- New phrases and margin notes have been added to clarify the exposition.
- A number of pieces of art have been redrawn.
- The data in examples and exercises have been updated to be more timely.
- Examples have been added. For instance, I added the new Example 1 in Section 5.3 (pages 340–341) because students have a tough time grasping the idea of a function defined by an integral with a variable limit of integration. I think it helps to look at Example 1 before considering the Fundamental Theorem of Calculus.
- Extra steps have been provided in some of the existing examples.
- More than 25% of the exercises in each chapter are new. Two of my favorites are Exercise 34 in Section 3.1 (page 133) and Exercise 52 in Section 5.4 (page 357).
- I've also added new problems to the Problems Plus sections. See, for instance, Problem 20 on page 221.
- One new project has been added (see page 198). It asks students to design a roller coaster so the track is smooth at transition points.
- A CD called *Tools for Enriching Calculus (TEC)* is available for use with the fifth edition. See the description on page x.
- Conscious of the need to control the size of the book, I've put additional topics (with exercises) on the revamped web site www.stewartcalculus.com (see the description on page xi) rather than in the text itself. These include the new topics Fourier Series and Formulas for the Remainder Term in Taylor Series, as well as topics that appeared in previous editions: Review of Basic Algebra, Rotation of Axes, and Lies My Calculator and Computer Told Me.

Features

Conceptual Exercises

The most important way to foster conceptual understanding is through the problems that we assign. To that end I have devised various types of new problems. Some exercise sets begin with requests to explain the meanings of the basic concepts of the section. (See, for instance, the first few exercises in Sections 2.2, 2.5, and 2.6.) Similarly, all the review sections begin with a Concept Check and a True-False Quiz. Other exercises test conceptual understanding through graphs or tables (see Exercises 3.1.1-3, 3.2.33-36, and 3.8.1-4).

Another type of exercise uses verbal description to test conceptual understanding (see Exercises 2.5.8, 3.2.46, and 4.3.47–48). I particularly value problems that combine and compare graphical, numerical, and algebraic approaches (see Exercises 4.4.33–34, and 3.4.23).

Graded Exercise Sets

Each exercise set is carefully graded, progressing from basic conceptual exercises and skilldevelopment problems to more challenging problems involving applications and proofs.

Real-World Data

My assistants and I spent a great deal of time looking in libraries, contacting companies and government agencies, and searching the Internet for interesting real-world data to introduce, motivate, and illustrate the concepts of calculus. As a result, many of the examples and exercises deal with functions defined by such numerical data or graphs. See, for instance, Figures 1, 11, and 12 in Section 1.1 (seismograms from the Northridge earthquake), Exercise 3.2.34 (percentage of the population under age 18), Exercise 5.1.14 (velocity of the space shuttle *Endeavour*), and Figure 4 in Section 5.4 (San Francisco power consumption).

Projects

One way of involving students and making them active learners is to have them work (perhaps in groups) on extended projects that give a feeling of substantial accomplishment when completed. I have included four kinds of projects: *Applied Projects* involve applications that are designed to appeal to the imagination of students. *Laboratory Projects* involve technology. *Writing Projects* ask students to compare present-day methods with those of the founders of calculus. Suggested references are supplied. *Discovery Projects* anticipate results to be discussed later or encourage discovery through pattern recognition. Additional projects can be found in the *Instructor's Guide* (see, for instance, Group Exercise 5.1: Position from Samples) and also in the *CalcLabs* supplements.

Problem Solvino

Students usually have difficulties with problems for which there is no single well-defined procedure for obtaining the answer. I think nobody has improved very much on George Polya's four-stage problem-solving strategy and, accordingly, I have included a version of his problem-solving principles following Chapter 1. They are applied, both explicitly and implicitly, throughout the book. After the other chapters I have placed sections called *Problems Plus*, which feature examples of how to tackle challenging calculus problems. In selecting the varied problems for these sections I kept in mind the following advice from David Hilbert: "A mathematical problem should be difficult in order to entice us, yet not inaccessible lest it mock our efforts." When I put these challenging problems on assignments and tests I grade them in a different way. Here I reward a student significantly for ideas toward a solution and for recognizing which problem-solving principles are relevant.

Technology

The availability of technology makes it not less important but more important to clearly understand the concepts that underlie the images on the screen. But, when properly used, graphing calculators and computers are powerful tools for discovering and understanding those concepts. This textbook can be used either with or without technology and I use two special symbols to indicate clearly when a particular type of machine is required. The icon indicates an exercise that definitely requires the use of such technology, but that is not to say that it can't be used on the other exercises as well. The symbol (AS) is reserved for problems in which the full resources of a computer algebra system (like Derive, Maple, Mathematica, or the TI-89/92) are required. But technology doesn't make pencil and paper obsolete. Hand calculation and sketches are often preferable to technology for illustrating and reinforcing some concepts. Both instructors and students need to develop the ability to decide where the hand or the machine is appropriate.

Tools for Enriching™ Calculus

The CD-ROM called *TEC* is a companion to the text and is intended to enrich and complement its contents. Developed by Harvey Keynes at the University of Minnesota and Dan Clegg at Palomar College, *TEC* uses a discovery and exploratory approach. In sections of the book where technology is particularly appropriate, marginal icons direct students to *TEC* modules that provide a laboratory environment in which they can explore the topic in different ways and at different levels. Instructors can choose to become involved at several different levels, ranging from simply encouraging students to use the modules for independent exploration, to assigning specific exercises from those included with each module, or to creating additional exercises, labs, and projects that make use of the modules.

TEC also includes *homework hints* for representative exercises (usually odd-numbered) in every section of the text, indicated by printing the exercise number in red. These hints are usually presented in the form of questions and try to imitate an effective teaching assis-

tant by functioning as a silent tutor. They are constructed so as not to reveal any more of the actual solution than is minimally necessary to make further progress.

Web Site: www.stewartcalculus.com

This site has been renovated and now includes the following.

- Algebra Review, with tutorial
- Additional Topics (complete with exercise sets): Fourier Series, Formulas for the Remainder Term in Taylor Series, Rotation of Axes, Lies My Calculator and Computer Told Me
- Drill exercises that appeared in previous editions, together with their solutions
- Problems Plus from prior editions
- Links, for particular topics, to outside web resources
- History of Mathematics, with links to the better historical web sites
- Downloadable versions of CalcLabs for Derive and TI graphing calculators

Content

This volume consists of the first six chapters of Single Variable Calculus, Fifth Edition.

A Preview of Calculus

The book begins with an overview of the subject and includes a list of questions to motivate the study of calculus.

1 · Functions and Models

From the beginning, multiple representations of functions are stressed: verbal, numerical, visual, and algebraic. A discussion of mathematical models leads to a review of the standard functions from these four points of view.

2 . Limits and Rates of Change

The material on limits is motivated by a prior discussion of the tangent and velocity problems. Limits are treated from descriptive, graphical, numerical, and algebraic points of view. Section 2.4, on the precise ε - δ definition of a limit, is an optional section.

3 · Derivatives

The material on derivatives is covered in two sections in order to give students more time to get used to the idea of a derivative as a function. The examples and exercises explore the meanings of derivatives in various contexts.

4 - Applications of Differentiation

The basic facts concerning extreme values and shapes of curves are deduced from the Mean Value Theorem. Graphing with technology emphasizes the interaction between calculus and calculators and the analysis of families of curves. Some substantial optimization problems are provided, including an explanation of why you need to raise your head 42° to see the top of a rainbow.

5 - Integrals

The area problem and the distance problem serve to motivate the definite integral, with sigma notation introduced as needed. (Full coverage of sigma notation is provided in Appendix E.) Emphasis is placed on explaining the meanings of integrals in various contexts and on estimating their values from graphs and tables.

6 - Applications of Integration

Here I present the applications of integration—area, volume, work, average value—that can reasonably be done without specialized techniques of integration. General methods are emphasized. The goal is for students to be able to divide a quantity into small pieces, estimate with Riemann sums, and recognize the limit as an integral.

Ancillaries

Single Variable Calculus, Fifth Edition, is supported by a complete set of ancillaries developed under my direction. Each piece has been designed to enhance student understanding and to facilitate creative instruction. The tables on pages xvi-xvii describe each of these ancillaries.

Acknowledgments

The preparation of this and previous editions has involved much time spent reading the reasoned (but sometimes contradictory) advice from a large number of astute reviewers. I greatly appreciate the time they spent to understand my motivation for the approach taken. I have learned something from each of them.

Fifth Edition Reviewers

Martina Bode,

Northwestern University

Philip L. Bowers,

Florida State University

Scott Chapman,

Trinity University

Charles N. Curtis,

Missouri Southern State College

Elias Deeba,

University of Houston-Downtown

Greg Dresden,

Washington and Lee University

Martin Erickson,

Truman State University

Laurene V. Fausett,

Georgia Southern University

Norman Feldman,

Sonoma State University

José D. Flores,

The University of South Dakota

Howard B. Hamilton,

California State University,

Sacramento

Gary W. Harrison,

College of Charleston

Randall R. Holmes,

Auburn University

James F. Hurley,

University of Connecticut

Matthew A. Isom,

Arizona State University

Zsuzsanna M. Kadas.

St. Michael's College

Frederick W. Keene,

Pasadena City College

Robert L. Kelley,

University of Miami

John C. Lawlor,

University of Vermont

Christopher C. Leary,

State University of New York at

Geneseo

Gerald Y. Matsumoto,

American River College

Michael Montaño,

Riverside Community College

Hussain S. Nur,

California State University, Fresno

Mike Penna,

Indiana University-Purdue University

Indianapolis

John Ringland,

State University of New York

at Buffalo

E. Arthur Robinson, Jr.,

The George Washington University

Rob Root

Lafayette College

Teresa Morgan Smith,

Blinn College

Donald W. Solomon,

University of Wisconsin-Milwaukee

Kristin Stoley,

Blinn College

Paul Xavier Uhlig,

St. Mary's University, San Antonio

Dennis H. Wortman,

University of Massachusetts, Boston

Xian Wu,

University of South Carolina

Previous Edition Reviewers

B. D. Aggarwala,

University of Calgary

John Alberghini,

Manchester Community College

Michael Albert,

Carnegie-Mellon University

Daniel Anderson,

University of Iowa

Donna J. Bailey,

Northeast Missouri State University

Wayne Barber,

Chemeketa Community College

Neil Berger,

University of Illinois, Chicago

David Berman,

University of New Orleans

Richard Biggs,

University of Western Ontario

Robert Blumenthal.

Oglethorpe University

Barbara Bohannon,

Hofstra University

Jay Bourland,

Colorado State University

Stephen W. Brady,

Wichita State University

Michael Breen,

Tennessee Technological University

Stephen Brown

Robert N. Bryan,

University of Western Ontario

David Buchthal,

University of Akron

Jorge Cassio,

Miami-Dade Community College

Jack Ceder,

University of California,

Santa Barbara

James Choike,

Oklahoma State University

Barbara Cortzen,

DePaul University

Carl Cowen,

Purdue University

Philip S. Crooke,

Vanderbilt University

Daniel Cyphert,

Armstrong State College

Robert Dahlin

Gregory J. Davis,

University of Wisconsin-Green Bay

Daniel DiMaria,

Suffolk Community College

Seymour Ditor,

University of Western Ontario

Daniel Drucker,

Wayne State University

Kenn Dunn,

Dalhousie University

Dennis Dunninger,

Michigan State University

Bruce Edwards,

University of Florida

David Ellis,

San Francisco State University

John Ellison,

Grove City College

Garret Etgen,

University of Houston

Theodore G. Faticoni,

Fordham University

Newman Fisher,

San Francisco State University

William Francis,

Michigan Technological University

James T. Franklin,

Valencia Community College, East

Stanley Friedlander,

Bronx Community College

Patrick Gallagher,

Columbia University-New York

Paul Garrett,

University of Minnesota-Minneapolis

Frederick Gass,

Miami University of Ohio

Bruce Gilligan,

University of Regina

Matthias K. Gobbert,

University of Maryland,

Baltimore County

Gerald Goff,

Oklahoma State University

Stuart Goldenberg,

California Polytechnic State

University

John A. Graham.

Buckingham Browne

& Nichols School

Richard Grassl,

University of New Mexico

Michael Gregory,

University of North Dakota

Charles Groetsch.

University of Cincinnati

Salim M. Haïdar,

Grand Valley State University

D. W. Hall.

Michigan State University

Robert L. Hall.

University of Wisconsin-Milwaukee

Darel Hardy,

Colorado State University

Melvin Hausner,

New York University/Courant

Institute

Curtis Herink.

Mercer University

Russell Herman,

University of North Carolina

at Wilmington

Allen Hesse,

Rochester Community College

Gerald Janusz.

University of Illinois at

Urbana-Champaign

John H. Jenkins,

Embry-Riddle Aeronautical

University, Prescott Campus

Clement Jeske.

University of Wisconsin,

Platteville

Carl Jockusch,

University of Illinois at

Urbana-Champaign Jan E. H. Johansson,

University of Vermont

Jerry Johnson,

Oklahoma State University

Matt Kaufman

Matthias Kawski,

Arizona State University

Virgil Kowalik,

Texas A&I University

Kevin Kreider,

University of Akron

Leonard Krop,

DePaul University

Mark Krusemeyer, Carleton College David Leeming, University of Victoria Sam Lesseig. Northeast Missouri State University Phil Locke. University of Maine Joan McCarter, Arizona State University Phil McCartney, Northern Kentucky University Igor Malyshev, San Jose State University Larry Mansfield, Queens College Mary Martin, Colgate University Nathaniel F. G. Martin, University of Virginia Tom Metzger, University of Pittsburgh Teri Jo Murphy, University of Oklahoma Richard Nowakowski, Dalhousie University Wayne N. Palmer, Utica College

Vincent Panico,

F. J. Papp,

University of the Pacific

University of Michigan-

Dearborn

Northwestern University Lothar Redlin, The Pennsylvania State University Tom Rishel. Cornell University Joel W. Robbin, University of Wisconsin-Madison Richard Rockwell. Pacific Union College Richard Ruedemann, Arizona State University David Ryeburn, Simon Fraser University Richard St. Andre, Central Michigan University Ricardo Salinas, San Antonio College Robert Schmidt, South Dakota State University Eric Schreiner. Western Michigan University Mihr J. Shah, Kent State University-Trumbull Theodore Shifrin, University of Georgia Wayne Skrapek, University of Saskatchewan Larry Small, Los Angeles Pierce College William Smith,

University of North Carolina

Mark Pinsky,

Edward Spitznagel, Washington University Joseph Stampfli, Indiana University M. B. Tavakoli, Chaffey College Stan Ver Nooy, University of Oregon Andrei Verona, California State University-Los Angeles Russell C. Walker, Carnegie Mellon University William L. Walton. McCallie School Jack Weiner, University of Guelph Alan Weinstein, University of California, Berkeley Theodore W. Wilcox, Rochester Institute of **Technology** Steven Willard, University of Alberta Robert Wilson, University of Wisconsin-Madison Jerome Wolbert, University of Michigan-Ann Arbor Mary Wright, Southern Illinois University-Carbondale Paul M. Wright, Austin Community College

In addition, I would like to thank George Bergman, Stuart Goldenberg, Emile LeBlanc, Gerald Leibowitz, Charles Pugh, Marina Ratner, Peter Rosenthal, and Alan Weinstein for their suggestions; Dan Clegg for his research in libraries and on the Internet; Arnold Good for his treatment of optimization problems with implicit differentiation; Al Shenk and Dennis Zill for permission to use exercises from their calculus texts; COMAP for permission to use project material; George Bergman, David Bleecker, Dan Clegg, Victor Kaftal, Anthony Lam, Jamie Lawson, Ira Rosenholtz, Lowell Smylie, and Larry Wallen for ideas for exercises; Dan Drucker for the roller derby project; Tom Farmer, Fred Gass, John Ramsay, Larry Riddle, and Philip Straffin for ideas for projects; Dan Anderson and Dan Drucker for solving the new exercises; and Jeff Cole and Dan Clegg for their careful preparation and proofreading of the answer manuscript. I'm grateful to Jeff Cole for suggesting ways to improve the exercises. Dan Clegg acted as my assistant throughout; he proofread, made suggestions, and contributed many of the new exercises.

In addition, I thank those who have contributed to past editions: Ed Barbeau, Fred Brauer, Andy Bulman-Fleming, Bob Burton, Tom DiCiccio, Garret Etgen, Chris Fisher, Gene Hecht, Harvey Keynes, Kevin Kreider, E. L. Koh, Zdislav Kovarik, David Leep, Lothar Redlin, Carl Riehm, Doug Shaw, and Saleem Watson.

I also thank Stephanie Kuhns, Kathi Townes, and Brian Betsill of TECHarts for their production services and the following Brooks/Cole staff: Kirk Bomont, editorial production project manager; Karin Sandberg, Stephanie Taylor, and Bryan Vann, marketing team; Stacy Green, assistant editor, and Jessica Zimmerman, editorial assistant; Earl Perry, technology project manager, and Jessica Reed, print/media buyer. They have all done an outstanding job.

I have been very fortunate to have worked with some of the best mathematics editors in the business over the past two decades: Ron Munro, Harry Campbell, Craig Barth, Jeremy Hayhurst, Gary Ostedt, and now Bob Pirtle. Bob continues in that tradition of editors who, while offering sound advice and ample assistance, trust my instincts and allow me to write the books that I want to write.

JAMES STEWART

Ancillaries for Instructors

Instructor's Resource CD-ROM

ISBN 0-534-39340-3

Contains Electronic Instructor's Guide, Electronic Solutions, BCA Testing, Instructions for BCA Homework, and electronic transparencies (CalcLink).

http://bca.brookscole.com

Tools for Enriching Calculus CD-ROM

by Harvey B. Keynes, James Stewart, and Dan Clegg ISBN 0-534-39731-X

TEC provides a laboratory environment in which students can explore selected topics. TEC also includes homework hints for representative exercises.

Instructor's Guide.

by Douglas Shaw, Harvey B. Keynes, and James Stewart ISBN 0-534-39363-2

Each section of the main text is discussed from several viewpoints and contains suggested time to allot, points to stress, text discussion topics, core materials for lecture, workshop/discussion suggestions, group work exercises in a form suitable for handout, and suggested homework problems. An electronic version is available on the Instructor's Resource CD-ROM.

Instructor's Guide for AP® Calculus

by Douglas Shaw and Robert Gerver, contributing author ISBN 0-534-39341-1

Taking the perspective of optimizing preparation for the AP exam, each section of the main text is discussed from several viewpoints and contains suggested time to allot, points to stress, daily quizzes, core materials for lecture, workshop/ discussion suggestions, group work exercises in a form suitable for handout, tips for the AP exam, and suggested homework problems.

Complete Solutions Manual

Single Variable

by Daniel Anderson, Jeffery A. Cole, and Daniel Drucker ISBN 0-534-39368-3

Includes worked-out solutions to all exercises in the text.

Printed Test Items

ISBN 0-534-39365-9

Contains multiple-choice and short-answer test items that key directly to the text.

Brooks/Cole Assessment (BCA) Testing ISBN 0-534-39364-0

Available online or on CD-ROM, browser-based BCA is fully integrated text-specific testing, tutorial, and course management software. With no need for plug-ins or downloads, BCA offers algorithmically generated problem values and machinegraded free response mathematics.

http://bca.brookscole.com

Text-Specific Videos ISBN 0-534-39392-6

> Text-specific videotape sets, available at no charge to adopters, consisting of one tape per text chapter. Each tape features a 10- to 20-minute problem-solving lesson for each section of the chapter.

Transparencies by James Stewart

Single Variable ISBN 0-534-39337-3

Full-color, large-scale sheets of reproductions of material from the text.

Ancillaries for Instructors and Students

Stewart Specialty Web Site www.stewartcalculus.com

> Contents: Algebra Review with tutorial - Additional Topics Drill exercises - Problems Plus - Web Links - History of Mathematics - Downloadable versions of CalcLabs for Derive and TI graphing calculators

BCA Homework

BCA Homework allows instructors to assign machine-gradable homework problems that help students identify where they need additional help. That assistance is available through workedout solutions that guide students through the steps of problem solving, or via live online tutoring at vMentor. The tutors at this online service will skillfully guide students through a problem, using unique two-way audio and whiteboard features.

http://bca.brookscole.com

The Brooks/Cole Mathematics Resource Center Web Site http://mathematics.brookscole.com

When you adopt a Thomson-Brooks/Cole mathematics text, you and your students will have access to a variety of teaching and learning resources. This Web site features everything from

book-specific resources to newsgroups. It's a great way to make teaching and learning an interactive and intriguing experience.

WebTutor™ on WebCT

ISBN 0-534-39390-X

Lecture notes, discussion threads, and quizzes on WebCT.

Journey Through Calculus

by Bill Ralph in conjunction with James Stewart

Student Version ISBN 0-534-26220-1

Instructor's Version ISBN 0-534-36823-9

A Calculus CD-ROM that brings together activities, tutorials, testing, a computer algebra system, and calculus content into one unified environment.

Student Resources

Tools for Enriching™ Calculus CD-ROM

by Harvey B. Keynes, James Stewart, and Dan Clegg ISBN 0-534-39731-X

TEC provides a laboratory environment in which students can explore selected topics. TEC also includes homework hints for representative exercises.

Interactive Video SkillBuilder CD-ROM

ISBN 0-534-39347-0

Think of it as portable office hours! The Interactive Video Skillbuilder CD-ROM contains more than eight hours of video instruction. The problems worked during each video lesson are shown next to the viewing screen so that students can try working them before watching the solution. To help students evaluate their progress, each section contains a ten-question Web quiz (the results of which can be emailed to the instructor) and each chapter contains a chapter test, with answers to each problem. Also included is MathCue Tutorial software. This dual-platform software presents and scores problems and tutors students by displaying annotated, step-by-step solutions. Problem sets may be customized.

Study Guide

Single Variable by Richard St. Andre ISBN 0-534-39367-5

Contains a short list of key concepts, a short list of skills to master, a brief introduction to the ideas of the section, an elaboration of the concepts and skills, including extra worked-out examples, and links in the margin to earlier and later material in the text and Study Guide.

Student Solutions Manual

Single Variable

by Daniel Anderson, Jeffery A. Cole, and Daniel Drucker ISBN 0-534-39369-1

Provides completely worked-out solutions to all odd-numbered exercises within the text, giving students a way to check their answers and ensure that they took the correct steps to arrive at an answer.

CalcLabs with Maple

Single Variable

by Philip Yasskin, Albert Boggess, David Barrow, Maurice Rahe, Jeffery Morgan, Michael Stecher, Art Belmonte, and Kirby Smith ISBN 0-534-39370-5

CalcLabs with Mathematica

Single Variable by Selwyn Hollis ISBN 0-534-39371-3

Each of these comprehensive lab manuals will help students learn to effectively use the technology tools available to them. Each lab contains clearly explained exercises and a variety of labs and projects to accompany the text.

A Companion to Calculus

by Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, and Kay Somers ISBN 0-534-26592-8

Written to improve algebra and problem-solving skills of students taking a calculus course, every chapter in this companion is keyed to a calculus topic, providing conceptual background and specific algebra techniques needed to understand and solve calculus problems related to that topic. It is designed for calculus courses that integrate the review of precalculus concepts or for individual use.

Linear Algebra for Calculus by Konrad J. Heuvers, William P. Francis, John H. Kuisti, Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner ISBN 0-534-25248-6

This comprehensive book, designed to supplement the calculus course, provides an introduction to and review of the basic ideas of linear algebra.

TO THE STUDENT

Reading a calculus textbook is different from reading a newspaper or a novel, or even a physics book. Don't be discouraged if you have to read a passage more than once in order to understand it. You should have pencil and paper and calculator at hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and read the text only if they get stuck on an exercise. I suggest that a far better plan is to read and understand a section of the text before attempting the exercises. In particular, you should look at the definitions to see the exact meanings of the terms. And before you read each example, I suggest that you cover up the solution and try solving the problem yourself. You'll get a lot more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically. Learn to write the solutions of the exercises in a connected, step-by-step fashion with explanatory sentences—not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appendix H. Some exercises ask for a verbal explanation or interpretation or description. In such cases there is no single correct way of expressing the answer, so don't worry that you haven't found the definitive answer. In addition, there are often several different forms in which to express a numerical or algebraic answer, so if your answer differs from mine, don't immediately assume you're wrong. For example, if the answer given in the back of the book is $\sqrt{2}-1$ and you obtain $1/(1+\sqrt{2})$, then you're right and rationalizing the denominator will show that the answers are equivalent.

The icon $\stackrel{\frown}{\bigoplus}$ indicates an exercise that definitely requires the use of either a graphing calculator or a computer with graphing software. (Section 1.4 discusses the use of these graphing devices and some of the pitfalls that you may encounter.) But that doesn't mean that graphing devices can't be used to check your work on the other exercises as well. The symbol $\stackrel{\frown}{\text{(AS)}}$ is reserved for problems in which the full resources of a computer algebra system (like Derive, Maple, Mathematica, or the TI-89/92) are required.

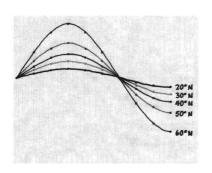
You will also encounter the symbol , which warns you against committing an error. I have placed this symbol in the margin in situations where I have observed that a large proportion of my students tend to make the same mistake.

The icon in indicates a reference to the CD-ROM *Journey Through Calculus*. The symbols in the margin refer you to the location in *Journey* where a concept is introduced through an interactive exploration or animation.

The CD-ROM *Tools for Enriching Calculus* (see inside front cover for availability) is referred to by means of the symbol [1]. It directs you to modules in which you can explore aspects of calculus for which the computer is particularly useful. *TEC* also provides *Homework Hints* for representative exercises that are indicated by printing the exercise number in red: 23. These homework hints ask you questions that allow you to make progress toward a solution without actually giving you the answer. You need to pursue each hint in an active manner with pencil and paper to work out the details. If a particular hint doesn't enable you to solve the problem, you can click to reveal the next hint.

The CD-ROM *Interactive Video Skillbuilder* (see inside front cover for availability) contains videos of instructors explaining two or three of the examples in every section of the text. Also on the CD is a video in which I offer advice on how to succeed in your calculus course.

I recommend that you keep this book for reference purposes after you finish the course. Because you will likely forget some of the specific details of calculus, the book will serve as a useful reminder when you need to use calculus in subsequent courses. And, because this book contains more material than can be covered in any one course, it can also serve as a valuable resource for a working scientist or engineer.


Calculus is an exciting subject, justly considered to be one of the greatest achievements of the human intellect. I hope you will discover that it is not only useful but also intrinsically beautiful.

CONTENTS

Preface viii

To the Student xviii

A Preview of Calculus 2

1 Functions and Models 10

1.1	Four Ways to Represent a Function 11
1.2	Mathematical Models: A Catalog of Essential Functions

1.3 New Functions from Old Functions 38

1.4 Graphing Calculators and Computers 48Review 55

Principles of Problem Solving 58

2 Limits and Rates of Change 64

- 2.1 The Tangent and Velocity Problems 65
- 2.2 The Limit of a Function 70
- 2.3 Calculating Limits Using the Limit Laws 82
- 2.4 The Precise Definition of a Limit 92
- 2.5 Continuity 102
- 2.6 Tangents, Velocities, and Other Rates of Change 112Review 121

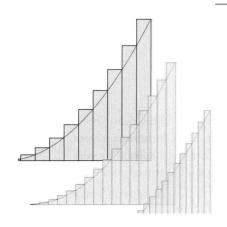
Problems Plus 124

25

3 Derivatives 126

3.1	Derivatives 127
	Writing Project • Early Methods for Finding Tangents 133
3.2	The Derivative as a Function 134
3.3	Differentiation Formulas 145
3.4	Rates of Change in the Natural and Social Sciences 157
3.5	Derivatives of Trigonometric Functions 169
3.6	The Chain Rule 175
3.7	Implicit Differentiation 184
3.8	Higher Derivatives 190
	Applied Project • Where Should a Pilot Start Descent? 197
	Applied Project • Building a Better Roller Coaster 198
3.9	Related Rates 198
3.10	Linear Approximations and Differentials 205
	Laboratory Project · Taylor Polynomials 212
	Review 213
Proble	ms Plus 218

4 Applications of Differentiation 222



4.1	Maximum and Minimum Values	223	
	Applied Project • The Calculus o	of Rainbows	232
1.2	The Mean Value Theorem 23	4	

- 4.3 How Derivatives Affect the Shape of a Graph 240
- 4.4 Limits at Infinity; Horizontal Asymptotes 249
- 4.5 Summary of Curve Sketching 263
- 4.6 Graphing with Calculus and Calculators 271
- 4.7 Optimization Problems 278

 Applied Project The Shape of a Can 288
- 4.8 Applications to Business and Economics 289
- 4.9 Newton's Method 294
- 4.10 Antiderivatives 300 Review 308

Problems Plus 311

5 Integrals 314

- 5.1 Areas and Distances 315
- 5.2 The Definite Integral 326

Discovery Project • Area Functions 339

- 5.3 The Fundamental Theorem of Calculus 340
- 5.4 Indefinite Integrals and the Net Change Theorem 350

Writing Project • Newton, Leibniz, and the Invention of Calculus 359

5.5 The Substitution Rule 360

Review 368

Problems Plus 372

6 Applications of Integration 374

- 6.1 Areas between Curves 375
- **6.2** Volumes 382
- 6.3 Volumes by Cylindrical Shells 393
- 6.4 Work 398
- 6.5 Average Value of a Function 402

 Review 406

Problems Plus 408

Appendixes A1

- A Numbers, Inequalities, and Absolute Values A2
- B Coordinate Geometry and Lines A10
- C Graphs of Second-Degree Equations A16
- D Trigonometry A24
- E Sigma Notation A34
- F Proofs of Theorems A39
- G Complex Numbers A44
- H Answers to Odd-Numbered Exercises A53

Index A83