BIOREACTION ENGINEERING

Characteristic Features of Bioreactors

VOLUME 2

KARL SCHÜGERL

0043135

Bioreaction engineering Volume 2

Characteristic Features of Bioreactors

Karl Schügerl

Institut für Technische Chemie Universität Hannover

Translated from the German by Valerie Cottrell

Edited by D. A. John Wase

Copyright © 1990 Otto Salle Verlag GmbH & Co. Frankfurt am Main Verlag Sauerländer AG, Aarau, Switzerland

English translation copyright © 1991 John Wiley & Sons Ltd

All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane, Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin 05-04, Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data: (Revised for vol. 2)

Schügerl, K. (Karl) Bioreaction engineering.

Translation of: Bioreaktionstechnik.
Vol. 2- edited by D. A. J. Wase.
Includes bibliographical references and indexes.
Contents: v. 1. Fundamentals, thermodynamics,
formal kinetics, idealized reactor types, and operation
modes — v. 2. Characteristic features of bioreactors.
1. Biochemical engineering. 2. Chemical reactors.
I. Wase, D. A. John, 1938— II. Title.
TP248.3.S3813 1987 660'.6 87–14778
ISBN 0 471 91309 X (v. 1)

British Library Cataloguing in Publication Data:

Schügerl, Karl
Bioreaction engineering. — Vol. 2, Characteristic features of bioreactors.

L. Chemical engineering. Biochemical reactions

1. Chemical engineering. Biochemical reactions I. Title II. Wase, D. A. John, 1938-

ISBN 0 471 92593 4

660.63

Typeset by Mathematical Composition Setters Ltd, Salisbury, Wilts Printed and bound in Great Britain by Biddles Ltd, Guildford, Surrey

Bioreaction engineering Volume 2

Characteristic features of bioreactors

The original German edition of this book is a volume in the

Principles of chemical technology series

auretion

Process technology for the chemical and related industries

Series Editors
Prof. Dr. Kurt Dialer, Munich
Juri Pawloski, D.Phil., Leverkusen
Dr. Ing. Wolfgang Springe, Leverkusen

Foreword to German Edition

Scarcely any other discipline has become so involved with other scientific fields to such great effect as chemical engineering has over the last few decades. The vast oil and gas deposits discovered during the post-war period started off the process and more recently, the concern over natural resources, energy supplies and environmental issues has helped to keep it going. Biologists, geologists and medical experts are all aware of the theoretical and practical importance of process engineering and chemical engineers incorporate the latest developments from the fields of mathematics, information technology, physics and electrotechnology amongst others into their work.

Although this mutual involvement is to be welcomed, it does make literature reviews rather difficult and this is where the 'Principles of Chemical Technology' series comes in. As stated in the foreword to the first series, it covers the principles of physics, chemistry, measurement and control technology, materials and process technology as used in basic physical processes and chemical reaction technology.

The publishers are aware that it is impossible to complete the overall concept by extending the series into the field of systems technology. All that can be done is to fit various pieces of the puzzle together depending on how topical a subject is and the level of expert knowledge available. Most specialists in a position to make a positive contribution are too heavily involved in their research and teaching, but there are always some who are prepared to find the time to give an overall summary and review of this enormously large field and even to write a book on the subject. Therefore, the publishers are confident that this series will produce work of benefit to a wide range of engineers, chemists and physicists working in the fields of process and machine technology both during their time as students and afterwards throughout their industrial career. At the same time, it is intended to provide a basis for new developments and openings into areas as yet unknown. The publishers welcome any support or constructive comments which could further the above objectives.

The series has also sparked off interest in other countries, several volumes being already translated into Spanish, French, English and Polish.

Preface

Volume 2 describes the actual submerged and surface reactors, compares them with each other and discusses selection and construction aspects. Furthermore, a review on measuring techniques for reactor characterization is given.

Introduction

Volume 1 describes the principles of bioreactor engineering, with special emphasis on the methods of operation of reactors, idealized types of reactors and classical kinetics of cell growth and product formation under ideal conditions.

Volume 2 describes actual submerged and surface reactors, compares them with each other and discusses the selection and construction aspects, together with a review of measuring techniques for reactor characterization.

Volume 3 will present the complex interaction between cell regulation, cell morphology, cell environment, reactor properties and closed-loop reactor control.

Simple cell and reactor models will be presented to aid the better understanding of the interaction processes. The dynamic behaviour of linked systems will also be featured. On-line methods will be presented for determining cell and reactor states and the information is then processed by means of models to provide an appraisal of bioreactor state and control.

Equations, figures and tables are numbered separately, Roman numerals being used for references to other volumes, e.g. Fig. I.50 (Fig. 50 in Volume 1), Table II.10 (Table 10 in Volume 2) or equation III.25 (equation 25 in Volume 3).

List of Symbols

```
L = \text{length}, M = \text{mass}, T = \text{time}, \Theta = \text{temperature}, 1 = \text{dimensionless}
                                                                          L^2
                               reactor/column cross-section
                          A<sub>h</sub> heat exchange surface
                            a constant
                                                                           L^2T^{-1}
                            a thermal diffusivity coefficient
                                                                           L^{-1}
                 a = a'/V_L specific gas/liquid interfacial area
                                                                           L^{-1}
                 a^* = a'/V specific gas/liquid interfacial area
                                                                           L^2
                               gas/liquid interfacial area
             Bd = \Delta \rho g d/\sigma Bond number
                                                                           1
        Bo_L = w_L H_s / D_{ax,L} Bodenstein number in liquid
                                                                           1
                          B_{\rm R} stirrer blade width
                                                                           L
                                                                           ML^{-3}
                           C concentration
                                                                           ML^{-3}
                       COD chemical oxygen demand
                                                                          L^{2}T^{-2}\Theta^{-1}
                        c, c_1 specific heat of liquid
                       c_{\rm v}, c_{\rm p} specific heat at constant volume
                                                                           L^2T^{-2}\Theta^{-1}
                                and pressure conditions
                           D dilution rate
                                                                           L^{2}T^{-1}
                      D, D_{\rm m} molecular diffusion coefficient
                                                                           L^2T^{-1}
                               axial dispersion coefficient
                         D_{ax}
                          De Deborah number
                                [equation (1.80)]
                                                                           1
                               diameter of draft tube
                                                                           L
                          D_{
m L}
                               diameter of holes in perforated
                               plate
                                                                           L
                     D_{\rm R}, D_{\rm S} vessel and column diameter
                                                                           L
                          d<sub>B</sub> bubble diameter
                                                                           L
                          d_{\rm D} diameter of nozzle holes
                                                                           L
                          d_{\rm d} orifice of reciprocating jet
                               reactor
                                                                           L
                           d_i jet diameter
                                                                           L
                          d<sub>L</sub> hole diameter
                                                                           L
                          d_{\rm N} diameter of driving jet
                                                                           L
                          d_{\rm P} particle diameter
                                                                           L
                          d_{\rm R} impeller diameter
                                                                           L
                               Sauter bubble diameter
                                                                           L
                          d_{\rm S}
                               energy dissipated per unit mass
```

and time

 $L^{2}T^{-3}$

$E_{ m G}$	relative gas hold-up	1
$E_{ m L}$	relative liquid hold-up	1
E_{O_2}	oxygen transfer efficiency with	
-02	respect to power input	$T^{2}L^{-2}$
e	local energy dissipation rate	ML^2T^{-3}
Fr	Froude number	1
$Fr_{\rm R} = N_{\rm R}^2 d_{\rm R}/g$	agitator Froude number	1
f	stroke frequency	T^{-1}
$Ga = d_R^3 g / \nu^2$	Galileo number	•
g	acceleration due to gravity	LT^{-2}
$\overset{\circ}{H}$		L
Ha	Hatta number [equations (6.13)	L
774	and (6.14)]	1
H_0	liquid level	$\stackrel{\iota}{L}$
Не	Henry's constant	$L^{2}T^{-2}$
H_{L}	height of draft tube	L
$H_{\rm S}$	height of column	L
$\Delta H_{ m S}$	substrate heat of combustion	L^2T^{-2}
$\Delta H_{\rm x}$	cell mass heat of combustion	$L^{2}T^{-2}$
$\frac{\Delta H_{\chi}}{h}$	axial coordinate in the column	L
Δh		L
$h_{ m L}$	liquid level above gas distributor	L
$h_{\rm R}$	height of agitator blades	L
"R I	ionic strength	ML^{-3}
K_{G}	overall mass transfer coefficient	ML
NG	through the gas film at gas/	
	liquid interface	LT^{-1}
$K_{\rm L}$	overall mass transfer coefficient	LI
ΝL	through the liquid film at gas/	
	liquid interface	LT^{-1}
$K_{\rm L}a$	overall volumetric mass transfer	LI
ИLU	coefficient	T^{-1}
$(K_{\rm L}a)^*$	$=K_{\mathbf{L}}a(\nu/g^2)^{0.33}$	1
$K_{\rm O}$		
NO	absorption	ML^{-3}
Ks	Monod's constant for substrate	ML
ns	consumption	ML^{-3}
k	consistency factor	$ML^{-1}T^{-m}$
k_{G}	gas-side mass transfer coefficient	LT^{-1}
$k_{\rm L}$	liquid-side mass transfer	LI
ΛL	coefficient	LT^{-1}
k_{R}	impeller pumping capacity	1
k*	empirical constant [equation	*
Λ.	(1.20)]	1
L	length	$\stackrel{\scriptstyle 1}{L}$
L	iciigtii	

L_{s}	length of free jet	L
1	length	L
$M_{ m G}$	molar mass of gas	1
$\dot{M}_{ m G}$	oxygen mass flow through the	
	interface	MT^{-1}
$M_{ m R}$	torque	ML^2T^{-2}
m	flow behaviour index	1
$m_{ m L}$	liquid mass	M
m_{O}	cell maintenance coefficient with	
	respect to oxygen consumption	T^{-1}
$m_{ m S}$	cell maintenance coefficient with	
	respect to substrate consumption	T^{-1}
$N_{ m G}, N_{ m L}$	cascade model parameter in gas	
	and liquid phases	1
$N_{ m R}$	impeller speed	T^{-1}
$N_{ m sh}$	specific impeller speed [equation	
	(1.117)]	1
$Ne_{ m G}$	Newton number (with aeration)	1
Ne_{R}	Newton number (without	
	aeration)	1
$Nu = \alpha d/\lambda$		1
O_{F}		ML^{-3}
${O_{\mathrm{F}}}^*$		ML^{-3}
$\Delta O_{ m F}$	$O_{\mathrm{F}}^* - O_{\mathrm{F}}$	ML^{-3}
P	power input	ML^2T^{-3}
$P_{ m B}$	power input through gas	
	expansion	ML^2T^{-3}
$P_{ m G}$	power input through agitator	2 2
	(with aeration)	ML^2T^{-3}
$P_{ m N}$	power input through liquid jet	ML^2T^{-3}
P_{R}	power input through agitator	2 2
	(without aeration)	ML^2T^{-3}
$P_{ m S}$	power input through liquid	2 _ 2
- 1	plunging jet	ML^2T^{-3}
$Pr = \nu / a$		1
P_{x}	1	$ML^{-3}T^{-1}$
$P/V_{\rm L}$	specific power input	$ML^{-1}T^{-3}$
$(P_{\rm G}/V_{\rm L})^*$	$= (P_{\rm G}/V_{\rm L})[\rho_{\rm L}(g\nu^4)^{0.33}]^{-1}$	1
$(P_{\rm G}/q_{\rm G})^*$	$= (P_{\rm G}/q_{\rm G})[\rho_{\rm L}(g\nu)^{2/3}]^{-1}$	1
$Q_{\rm G} = q_{\rm G}/N_{\rm R} d_{\rm R}^{3}$	substrate throughput	MT^{-1}
	aeration group	1
$Q_{ m W}$	heat production rate	ML^2T^{-3}
Q_{O_2}		$ML^{-3}T^{-1}$ T^{-1}
$q_{\rm G}$	gas throughput	T^{-1}
$q_{\mathrm{G}}^* = q_{\mathrm{G}}/V_{\mathrm{L}}$	specific aeration rate	1

$(a_G/V_L)^*$	$= (q_{\rm G}/V_{\rm L})[\rho_{\rm L}(g\nu)^{0.67}]^{-1}$	1
$q_{\rm L}$	17	L^3T^{-1}
$q_{ m O}$	specific oxygen consumption rate	T^{-1}
$q_{\rm R} = k_{\rm R} N_{\rm R} d_{\rm R}^{3}$	pumping speed of agitator	$L^{3}T^{-1}$
****		LI
$q_{ m S}$	specific substrate consumption	T^{-1}
	rate	
$q_{ m W}$	specific heat production rate	L^2T^{-3}
R	radius of column	L
R	general gas constant	$ML^2T^{-2}\Theta^{-1}$
R_{O}	rate of oxygen consumption	$ML^{-3}T^{-1}$
$R_{ m P}$	rate of product formation	$ML^{-3}T^{-1}$
R_{S}	rate of substrate consumption	$ML^{-3}T^{-1}$
$R_{\rm x}$	growth rate	$ML^{-3}T^{-1}$ $ML^{-3}T^{-1}$
Re	Reynolds number	1
$Re_{\rm D} = w_{\rm Ld} d_{\rm N} / v_{\rm L}$	Reynolds number for nozzle	
	system	1
$Re_{\rm R} = d_{\rm R} N_{\rm R} / v_{\rm L}$	Reynolds number for a mechani-	
	cally agitated system	1
$Re_{\rm r}$	representative Reynolds number	
2101	[equation (1.17)]	1
$Re_{\rm S} = W_{\rm S} L_{\rm S} / v_{\rm G}$	Reynolds number for a free jet	•
1103 11323/10	system	1
r	radial coordinate	$\stackrel{\cdot}{L}$
$r_{ m R}$	impeller radius	L
rpm	revolutions per minute	T^{-1}
S	substrate concentration	ML^{-3}
$Sc = \nu/D_{\rm m}$		1
- *	modified Schmidt number	1
	single-cell protein	.1.
Sh	Sherwood number	1
	modified Sherwood number	1
$Sh_{\rm R} = K_{\rm L} a d_{\rm R}^2 / D_{\rm m}$		1
S	mean residence time of liquid	\boldsymbol{T}
Tr.	elements at the interface	T
T	temperature	θ
t c c c c	time	T
$U=S_0-S_e/S_0$	substrate conversion	1
u	shear rate	LT^{-1}
V	volume of aerated two-phase	- 3
	system	L^3
$V_{ m G}$	gas volume	L^3
	$=q_{\rm G}/V_{\rm L}$	T^{-1}
	liquid volume	L^3
$\dot{V}_{ m L}$	liquid volume throughput	$L^{3}T^{-1}$
<i>v</i>	velocity	LT^{-1}
$We = W_{\rm S}^2 d_{\rm D} \rho / \sigma$	Weber number	1

w	velocity	LT^{-1}
	liquid velocity in jet	LT^{-1}
$w_{\rm G} = w_{\rm SG}/E_{\rm G}$		LT^{-3}
	jet velocity	LT^{-1}
$w_{\rm L} = w_{\rm SL}/(1 - E_{\rm G})$		LT^{-1}
	liquid speed in hydrodynamic	LI
w_{Ld}	driving jet	LT^{-1}
W-	relative bubble speed	LT^{-1}
$w_{\rm R}$		LI
$w_{\rm S}$	free jet speed superficial gas velocity	LT^{-1}
WSG	in the second se	
WSL	superficial liquid velocity single bubble rise velocity	LT^{-1}
$W_{T} X$		$LT^{-1} \\ ML^{-3}$
		L
X	local coordinate	L
$X = (P_{\rm G}/q_{\rm G})[\rho(g\nu)^{2/3}]^{-1}$	gas dispersion factor	
v	[equation (1.128)]	1
Y		
37	factor [equation (1.127)]	1
$Y_{\mathrm{P/X}}$	product yield coefficient based	4
¥7	on cell mass formed	1
$Y_{\mathrm{P/S}}$	product yield coefficient based	
**	on substrate consumed	1
$Y_{\rm X/O}$		
**	oxygen consumed	1
$Y_{\rm X/S}$		
**	substrate consumed	1
$Y_{ m X/W}$	-	r 2 m - 3
	heat generated	L^2T^{-3}
α, β	constants	
α	heat transfer coefficient	$MT^{-3}\Theta^{-1}$
α	blade angle	1
α	gas circulation ratio	1
$\beta_{\mathbf{k}}$	coefficient of cubic expansion	Θ^{-1}
δ	thickness of diffusion layer	L
η	dynamic viscosity	$ML^{-1}T^{-1}$
$\eta_{ m r}$	representative viscosity	$ML^{-1}T^{-1}$
η	pump efficiency	1
θ	mixing time without aeration	T
$ heta_{ m G}$	mixing time with aeration	T
$ heta_{ extsf{P}}$	particle residence time at	_
	interface	T
. λ	coefficient of thermal	
	conductivity	$MLT^{-3}\Theta^{-1}$
λ^*	characteristic time	
	[equation (1.80)]	T

μ	specific growth rate	T^{-1}
ν	kinematic viscosity	L^2T^{-1}
π	specific product production rate	T^{-1}
$ ho_{ m L}, ho_{ m G}$	density of liquid, of gas	ML^{-3}
$\Delta ho = ho_{ m L} - ho_{ m G}$	density difference	ML^{-3}
σ	surface tension	MT^{-2}
au	shear stress	$ML^{-1}T^{-2}$
au	dynamic turbulence pressure	$ML^{-1}T^{-2}$
Φ	Thiele modulus [equation (2.5a)]	1

Shortened List of Contents to Volume 1

	THEFT	Juuctio.	Ш	1	
2	Prin	ciples.	Idealized models	4	
	2.1	1 Modus operandi of reactors			
	2.2	Idealiz	zed reactor types	7	
		2.2.1	Basic types	7	
		2.2.2	Reactor circuits	12	
		2.2.3	Dispersion models	15	
		2.2.4	Reactor combinations	20	
		2.2.5	Special cases (partial cell recycle)	23	
	2.3	Forma	al kinetics of cell growth and product formation in		
			red reactors	30	
		2.3.1	Qualitative description of growth and product		
			formation	31	
		2.3.2	Growth models	39	
			- non-structured distributed models		
			— competitive inhibition		
			— non-competitive inhibition		
			— substrate inhibition		
			— product inhibition		
			— fungal cultures		
		2.3.3	Product formation models	46	
		2.3.4	Growth in idealized reactors	49	
		2.3.5	Model extension by a death or maintenance term	97	
		2.3.6	Model extension by growth inhibition	103	
		2.3.7	Product formation in stirred reactors	119	
		2.3.8	Use of balances for biological model parameter		
			estimates	127	
	2.4	Opera	tion modes in stirred reactors	164	
		2.4.1	Discontinuous (batch) operation	164	
		2.4.2	Continuous operation	170	
		2.4.3	Semi-continuous operation	205	
		2.4.4	Periodic-fed batch cultivation	212	
Ref	eren	ces		225	
List	t of	symbol	s	229	
		-			
[nd	ex .			239	

List of Contents

List	of	symbols		xix
1 (Cha	racterist	ic features of bioreactors	1
	1.1	Definit	ion of reactor features	3
	1.2		c 'submerged reactors' with energy supplied by	4
			nically moving agitators	10
		1.2.1	Reactors with mechanical agitators	10
			1.2.1.1 Liquids of low and medium viscosity	22
			1.2.1.2 Media of high viscosity	41
		1.2.2	Mechanically stirred loop reactors with $H/D_R \leq 3$	55
		1.2.3	Mechanically stirred loop reactors with $H/D_R \ge 3$	64
		1.2.4	Reactors agitated and aerated with self-aspirating	0.1
			impellers	66
		1.2.5	Horizontal loop reactors agitated and aerated with	
			self-aspirating impellers (Torus reactors)	69
		1.2.6	Cascade reactors with rotary agitation elements	74
		1.2.7	Cascade reactors with reciprocating mixing elements .	77
			1.2.7.1 Reciprocating jet reactor	77
			1.2.7.2 Reciprocating jet cascade reactors with	
			oscillating mixing elements and fixed-stage	
			separating plates	79
		1.2.8	Flat-bladed turbine-type surface aerators	79
		1.2.9	Rotating biological surface aerators	82
		1.2.10	Rotating disc reactors	83
		1.2.11	Paddle-wheel reactors	85
		1.2.12	Horizontal tubular reactors	87
			1.2.12.1 Rotating horizontal tubular reactor	88
			1.2.12.2 Horizontal tubular reactor with stirrer	88
			1.2.12.3 Horizontal ring-gap reactor with rotating	
			internal drum	90
			1.2.12.4 Horizontal ring-gap reactor with rotating	
			internal drum and biofilm	91
			1.2.12.5 Immersed coil reactors	92
- 1	.3	Aerobio	submerged reactors' with power supplied by the	
		kinetic	energy of the liquid circulated by a pump in a loop	92
		1.3.1	Gas dispersion mechanisms making use of kinetic	
			energy in the liquid	93

		1.3.1.1	Nozzies for power input and gas	
			dispersion	93
			1.3.1.1.1 Two-phase nozzles	94
			1.3.1.1.2 Single-phase nozzles	97
		1.3.1.2	Other gas dispersion systems	99
	1.3.2		ors with liquid pump supplying energy input	99
		1.3.2.1	Tower jet reactor	101
		1.3.2.2	Tower jet loop reactor with non-coaxial	
		m. 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	loop	110
		1.3.2.3	Tower jet loop reactor with coaxial draft	
			tube	111
		1.3.2.4	Downflow jet loop reactor with coaxial	
		110121	draft tube	118
		1.3.2.5	Plunging jet reactors	119
		1.3.2.3	1.3.2.5.1 Plunging jet reactor with	.5.55
			single-phase nozzle	119
			1.3.2.5.2 Plunging jet reactors with	
			two-phase nozzles	123
		1.3.2.6	Immersed channel reactor	124
		1.3.2.7	Downflow tower reactor	125
		1.3.2.8	Perforated and sieve-plate cascade reactors	127
		1.3.2.9	Packed-bed reactors	127
		1.3.2.7	1.3.2.9.1 Biofilm reactors	127
			1.3.2.9.2 Reactors with immobilized	
			cells	132
		1.3.2.10	Liquid fluidized-bed reactor	134
		1.3.2.11	Tubular loop reactor	137
		1.3.2.11	Tubular loop reactor	157
1.4	Aarobi	a 'cubmara	ged reactors' with power supplied by	
.4				138
			expansion	139
	1.4.1		formation in the laminar flow range	139
	1.4.2		formation in the turbulent flow range	139
	1.4.3		ation of aerobic 'submerged reactors' with	1.42
		~	applied by compressed gas expansion	142
		1.4.3.1	Bubble columns	145
			1.4.3.1.1 Bubble columns without	140
			internals	146
			1.4.3.1.1.1 General	
			information.	1.14
			Model concepts	146
			1.4.3.1.1.2 Gas hold-up	152
			1.4.3.1.1.3 Bubble size	156
			1.4.3.1.1.4 Specific gas/liquid	
			interfacial area	157