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Preface

This book is the second of a two volume collection of proceedings of the
fourth summer School in Numerical Analysis, which was held at
Lancaster University from 15th July to 3rd August, 1990. The meeting
was sponsored by the Science and Engineering Research Council of
Great Britain, and was attended by approximately 120 participants from
14 countries. Many of the participants delivered seminars at the
meeting, but this volume contains only the contributions of three of the
nine invited main speakers.

Each week of the School was devoted to a specific topic within
numerical analysis, the topics for 1990 being

® nonlinear partial differential equations
® dynamical systems
® multivariate approximation.

Each main speaker was asked to give a series of five one hour lectures,
with the exposition pitched at such a level that reseachers and graduate
students could both gain something useful from the courses—a
demanding brief, but one which was met very well by all speakers. The
three chapters which form this volume are an account of the happenings
in week three. The proceedings of weeks one and two are contained in
volume I, which bears the title Advances in Numerical Anaylsis I: Nonlinear
Partial Differential Equations and Dynamical Systems, and is also published
by Oxford University Press.

The selection of topics for the School reflects current trends in
research in numerical analysis. Since the early 1970s, the approximation
theory community has slowly been coming to terms with the particular
difficulties associated with problems in two or more dimensions. While
the univariate theory was extremely well developed by 1980, such topics
as multivariate interpolation, multivariate splines, and the interpolation
of scattered data did not possess a unified theory. The decade of the
eighties saw a rapid and dramatic change in this situation, and 1990
seemed a particularly appropriate time to review these substantial
advances. However, a particularly exciting new development in the

~form of wavelet theory was also beginning in the latter part of the

decade, and by the time the summer school took place, the theory was
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sufficiently well developed to make a preliminary look at this important
area worthwhile. Thus the first chapter of this volume is devoted to
wavelet theory in the univariate setting. Before this book appears,
wavelet theory will be well and truly established in a second wave of
development—that of multivariate wavelets. The second chapter deals
with a particular aspect of computer-aided geometric design. There has
long been a fruitful interplay between approximation theory and this
rapidly expanding and important application of the subject, and the
whole area is now far too large to permit satisfactory treatment in one
series of 5 lectures. Consequently, Chapter 2 concentrates on the theory
of subdivision algorithms. This is a particularly pleasing topic, by virtue
of its mathematical elegance as well as its applicability. The final chapter
is a truly massive contribution to the new area of radial basis functions.
The idea of using radial basis functions for interpolating scattered data
was in existence as early as 1970, but the theoretical understandings of
this area did not begin to develop until the 1980s. In that decade, a
considerable number of able workers turned their attention to the
important theoretical underpinnings of the area, and the final chapter
gives a good account of much of this activity.

In compiling these proceedings, I have striven for as uniform a
presentation as possible, without encroaching on the rights of the
individual author to present things as she/he sees fit. A decimal system
of notation is adopted for sectioning, with the label 2.3 representing
section 3 of Chapter 2. The equation numbering is done within sections,
so that equation 2.3 is the third numbered equation in section 2 of the
current chapter. Theorems, Lemmas, etc., are numbered sequentially
within sections. The postal address of the author is listed at the end of
the chapter.

Finally, a few acknowledgements are in order. The organisation of the
School was carried out jointly with my good friend and colleague John
Gilbert. I thank him for his help and support. Sue Hubbard assisted in
the day to day running of the School and did some preliminary ‘TgXing’
of manuscripts. The Science and Engineering Research Council once
again provided generous support. Their contribution covered all the
organisational and running costs of the meeting as well as the expenses
of the speakers, and the accommodation and subsistence expenses of up
to twenty participants each week. The organisation of each weekly
scientific programme was undertaken by people who were entitled ‘local
experts’. These were Professor Charles Elliott, Professor Alastair Spence
and Dr John Gregory. There was some puzzlement on the part of
participants as to the choice of words in this title, but I am unable to
remember whether the questions centred around the use of the word
‘expert’ or the word ‘local’! It is a pleasure to acknowledge their
contributions to the overall success of the meeting. —

Will Light

Leicester, 1991
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1
Wavelets and Spline Interpolation

Charles K. Chui

Abstract. This is an introductory tutorial of wavelets from a spline the-
orist’s point of view. The concept of integral wavelet transform (IWT) for
time-frequency localization is discussed, and a comparison of compactly
supported orthonormal wavelets, spline wavelets, and biorthogonal wavelets
is given. When spline wavelets are being used, interpolatory splines are
readily available for orthogonal wavelet decompositions, yielding the IWT
at dyadic locations without performing any integration. In addition, since
the dual spline wavelets are used as wavelet window functions, linear-phase
filtering is accomplished.

1.1 Introduction

In approximation theory, functions in a Hilbert space such as the space
L? = L%(—o00,00) are projected onto a much less complicated subspace
VN to facilitate the solution of an optimization problem or a differential
equation, or simply to provide a nice representation of the functions for the
purpose of modeling, numerical computation, storage, transmittance, etc.
If the projection is a best approximation, then the usual questions of ex-
istence, characterization, uniqueness, computational effectiveness, etc., are
asked. In addition, if the functions under consideration are restricted to a
certain smoothness class, then the problems of the order of approximation
and characterization of this smoothness class in terms of this approxima-
tion order are studied. In doing so, a nested sequence of approximating
subspaces Viy D Vy_; D --- is always assumed. However, the question as
to how the consecutive differences of the error functions behave is seldom
addressed. Note that if the subspaces happen to have “local bases”, then
this sequence of consecutive differences of error functions give very impor-
tant information on the approximants, and consequently of the original
functions. For instance, information such as locations of different levels
of irregularities, singularities, and even chaotic behaviors of the functions
can be easily detected from this study. The objective of this writing is to
investigate in some details this important point of view.
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Let --- C V_; C Vo C V4 C --- be a nested sequence of closed subspaces
of L? such that their union is dense in L? and their intersection is the zero
function. For each k € Z, since V} is subspace of Vi1, we may consider
its orthogonal complement Wj. In other words, W}, is also a subspace of
Vi1, it is orthogonal to Vi, and the sum of Wy, and V} is all of Viy;. We
will use the notation

Vig1 = Wi @ Vi, (1.1)
where orthogonality is always assumed in the direct sum. Under the as-

sumptions we made on {V,}, it is clear that

WnlW, for m#mn, and (1.2)

L= @we (1.3)

kEZ

Furthermore, for any given € > 0, and any f € L?, there exist functions
fn €V and fn_p € Vn_a, M > 0 such that

If = fnll <&
IN=9gN-1D - D gN-M D fN_pm, with g € Wi; (1.4)
lfv-mll <e.

Here, the notation of orthogonal sums is again used. That is, every func-
tion in L? has a “satisfactory” representation as a finite sum of functions
from the mutually orthogonal subspaces W}, with the “remainder” fy_a
being usually treated as the “blurred” version of f. If each W, has a local
basis, then the localization of each gy yields the localization of f at each
“orthogonal level”, and in particular, gives an analysis of the sequence of
consecutive errors:

(frrr =)= (e = F) = fe41 — fr = g

To discuss how this process localizes the different levels of irregularities of
f, it is best to study the notion of integral wavelet transform (IWT) of f,
which, however, is defined only by means of “dilation” and “translation”.
For this reason, we will only restrict our attention to a nested sequence of
subspaces generated by dilation and translation of a single basis function,
although our discussion is sometimes valid in the general situation. In
addition, for simplicity, with the exception of a short discussion in Section
1.8, our presentation will be restricted to functions of one variable, as it
will certainly be clear to the reader that most of the ideas, techniques, and
results presented here easily carry over to the multivariate setting, at least
by using tensor products.
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1.2 Integral Wavelet Transforms

It is well know that in many applications, the behavior of a function f(t)
can only be observed from its Fourier transform

flw) = /_ = f(t)e ™t dt. ' (2.1)

For instance, if t and w represent the “time” and “frequency” variables, re-
spectively, then a “signal” f(t) in the time-domain is detected by measuring
its “spectrum” f (w) in the frequency domain. The spectral representation
of a signal f by using the Fourier transform f in (2.1), however, is usu-
ally not effective, since the integral is determined by the global information
of the signal. In particular, time-evolution of frequencies is not reflected
by this representation. This defect of the Fourier transform was already
observed by D. Gabor, who, in his 1946 paper [28], applied a Gaussian
function to “window” the Fourier transform. Since the Fourier transform
of a Gaussian function is again a Gaussian function, an application of the
Plancherel Identity shows that the spectrum f is also windowed. In other
words, both f and f are localized. In general, a function g € L? is called
a window function, provided that it has finite standard deviation, namely:

I - o) (g0 dt]

Agi= = < 0, (2.2)
! [ (g(t))? dt
where % is the “center” of the window function defined by
* t(g(t))? dt
1o 1= Joso MO dt ))2 . (2.3)
J o (g(t))? dt

Hence, with center at ?o, the quantity 2A, can be used to represent the
width of this window function. In other words, we will view the window
provided by the function g as an interval [to — Ay, to+Ag]. If both g and its
Fourier transform g are window functions with centers at to, wy and widths

244,24, respectively, then the Plancherel Identity yields:

oo
| s T e
—o0 ‘
—t(w—w, = 1 2 T o — i) e =
= g H{u—uolt wﬂ/ Fma(n +wo — w)e ™ =ldn.  (2.4)

That is, when a signal f in the Fourier transform is windowed at ¢, its
spectrum f in the inverse-Fourier transform is also windowed at w. In fact,
the time-frequency window in the (¢,w)-plane for (2.4) is given by

[t—Agt+ Ayl X [w—Ag,w+ Ay (2.5)
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We remark that by the Heisenberg Uncertainty Principle, the window in
(2.5) cannot be designed to have area smaller than 1/, since

1
AgAy > — 2.6
99——47‘_ ( )

for any g, and equality in (2.6) holds if and only if g is a Gaussian function
g(t) = e~ for any a > 0. A very important observation here is that the
size of the window in (2.5) is independent of the location of its center (¢, w),
so that the same window is used to localize both high and low frequencies.
Consequently, a short-lived high-frequency signal cannot be accurately de-
tected if A, is not small enough, while a small value of A4 certainly results
in inefficiency in the study of low-frequency behavior.

The integral wavelet transform (IWT) to be discussed next has the ca-
pability of zooming in on short-lived high-frequency phenomena and zoom-
ing out in low-frequency environment. In other words, although the area
of the time-frequency window is constant as governed by the Heisenberg
Uncertainty Principle, it automatically narrows when its center is moved
upward in the upper (t,w)-plane and widens at low frequencies w. This is
exactly what is needed to study irregularities and to locate singularities.
As introduced by Grossmann and Morlet [30], for any window function %,
the integral wavelet transform of any f € L? is defined by

Wor),0) = 7= [ Zf(tw(%)dt. (27)

Note that this definition only depends on dilation and translation of the
window function %, and hence it is somewhat easier to compute Wy, f than
the window Fourier transform. The importance is that if an appropriate v
is chosen as the window function in (2.7), then we will see in Section 1.3 that
there is no need to compute Wy, at least at the dyadic points (j/2*,27%),
J,k € Z. A so-called “decomposition algorithm” for this purpose will be
discussed in Section 1.4. The following extra conditions on 1 are needed
in the definition of the IWT:

(i) 12 is also a window function with center at some wy > 0, and
(i1) ¢y = fow(]zZ(w)lz/|w|) dw < oo for real 9, and ffow(|$(w)|2/|w|)dw <

oo in general.

The reason for assuming (i) is that we have to localize frequencies with the
zoom in and zoom out capability, and (ii) is needed for the reconstruction
of f from the values of (Wyf)(b,a). Indeed, for real-valued 1, if (ii) is
satisfied, then for every f € L2, we have ’

=2 [T [ wneaw (D) al 0 e
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The proof of this formula is straightforward and we only refer the interested
readet to [9,25,29]. Observe the similarity with the classical results on
singular integral operators (cf., [4]). Again, for an appropriate choice of 1,
f can be recovered from Wy, f at the dyadic points (j/2%,27%), 5, k € Z, by
using an infinite “wavelet series”; and in fact, a so-called “reconstruction
algorithm” will be introduced in Section 1.4 for this purpose.

‘Now, by applying the Plancherel Identity, the integral wavelet transform
n (2.7) becomes

(Wof)(b,a) = 5‘/;‘; /_ " e () (aw) . (2.9)

Hence, by setting
9(w) = P(w + wo), . (2.10)
where wy > 0 is the center of 9 (cf., (i), we have

@(aw)=y(w__1£“n),

a

so that (2.9) is equivalent to

Wes)s,0) = L2 [~ e"‘wf('w)g(“’ ‘_wf‘)dw‘ (2.11)

a~1

Observe that while the width of the time-window function %((t — b)/a)
in the definition of the IWT in (2.7) is 2aAy, the width of the frequency-
window function g((w-wo/a)/a™") in (2.11) is2a~' A ; (cf,, (2.10)). Hence,
if the center of 9 is located at t, then the time-frequency window of the
IWT Wy(b,a) in the time-scale plot ((t, a)-plane) is

wo i Wo =
[b—to—aA,p,b—-to-FaA,j,]X [-a——a 1A$,?+a IA;I;] (212)

Here, although the area of the window is a constant given by 4AwA;p~ as

expected, the size changes according to the values of a. If we set % to be
(a positive constant multiple of) the frequency w, then the time-frequency
window (2.12) in the (¢,w)-plane narrows at high frequencies and widens at
low frequencies. This is the zoom in and zoom out effect of the IWT W, f.
The choice of a positive number wy as the center of ¢ in (i) enables us
to study positive frequencies by using the window (2.12), since the scaling
factor a is positive. For more details, see [9,10].
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1.3 Multiresolution Analysis and Wavelets

We will follow Mallat [33] and Meyer [36] in our introduction of wavelets by
using the notion of multiresolution analysis (cf., [34,35] for the motivation
of this terminology). As in Section 1.1, we consider a nested sequence of
closed subspaces {V,,} of L%

"'Cv_1CVOCV1C"', (3.1)
and will assume that {V},} satisfies the following conditions:
(a) closp2( U Vn) = L%
neZ
(b) N Va={0}
neZ
(c) f€Va= f(2) € Vout1, n € Z; and
(d) there exists a ¢ € Vp such that {¢(- —n): n € Z} is an unconditional

basis of Vy, in the sense that there exist positive constants A, B such

that 5

All{ea}llz < ||D° end(- =n)|| < Bll{ea}liZ

neZ L2
for all {c,} € ¢2.

If (a)-(d) are satisfied, then we say that the nested sequence {V,} of
closed subspaces of L? yields a multiresolution analysis of L2, or equiva-
lently, the function ¢ in (d) generates a multiresolution analysis of L2.

A typical example is the sequence of spline spaces defined as follows:
Let m be any positive integer and consider

Sm = {f eCcm % fl[n,n+1] €MTm-1,n € %}v (32)

where 7,1 denotes the collection of all polynomials with degree no greater
than m —1. S, is called the polynomial spline space of order m (or degree
m — 1), with the set Z of integers as the knot sequence. It is well known
(cf. [41]) that the m'" order B-spline N,, defined by

Non(t) = (Nonr % N1)(2) = / Npnos(t - z)de, (33)

with Ny = Xo,1), is in Sy, and in fact, it generates all of S,, in the sense
that every f € S,, can be represented by a spline series

f= Z an N (- = n),

ek 4

O N S 55

DE—

s S ea———————A
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where {a,,} is an arbitrary sequence. Here, pointwise convergence is cer-
tainly guaranteed since at each point the series is only a finite sum due to
the simple fact that '

supp Ny, = [0, m]. (3.4)

Now, for each k € Z, let
Vi = clospz (N (28 - —n): n € Z),

where the standard notation for linear span is used. Then V} is the closed
spline space of order m and with knot sequence 2~*Z%, and hence it is clear
that we have a nested sequence --- C V_; C Vo C V; C ---. This nested
sequence certainly satisfied (a)-(c). In addition, (d) is satisfies with A and
B being the supremum and infimum, respectively, of the spectrum of the
positive definite symmetric banded Toeplitz matrix lai—;], where

aj = [oo N ()N (t —Jj)dt = Nopm(m +J)- (3.5)

Let us now return to the general setting where ¢ is any generator of a
multiresolution analysis of L2. Then by defining

¢k,n = ¢(2k . _n)7 (3-6)

it is clear that for each k € Z, {¢yn: n € Z} is an unconditional basis of
Vk, with

2

27 Al{ea}li < | Y entin| < 27FBll{ea}l
neZ L2

for all {c,} € ¢, where A and B are given in (d). Next, for every k € Z,
let us consider the orthogonal complementary subspace Wy, of Vi1 relative
to Vi as defined in (1.1). As already observed in Section 1.1, the subspaces
Wi of L%, k € Z, are mutually orthogonal and yield an orthogonal decom-
position of L? as indicated in (1.3). From a more practical point of view,
the (approximate) finite orthogonal decomposition (1.4) is also achieved for
any € > 0. We will delay our discussion of the decomposition and recon-
struction algorithms for this finite orthogonal decomposition to the next
section.

In Section 1.5, we will see by using an orthogonalization argument that
there exists a function ¢ € W, that generates all the orthogonal comple-
mentary subspaces Wy in the sense that

Wi = clospz (Y n: n € %), (3.7)
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where

Yrn = P28 - —n), knek (3.8)

In fact, under very mild conditions, there exists a 1 with exponential decay.
In any case, 9 is called a wavelet corresponding to the multiresolution anal-
ysis generated by ¢. The importance of the pair (¢, ) should be clear: ¢ is
used for approximation while v is used for analysing the errors (cf., Section
1.1). Of course, ¢ € V; and ¥ € Wy are usually not unique. The minimally
supported ¢ € Wy and ¢ € W, are called the (generalized) B-spline and
B-wavelet for this multiresolution analysis under consideration. We will
not pursue the study of minimally supported ¢ and % in this account but
only refer the interested reader to [20] where generalized B-splines and B-
wavelets are characterized. In general, since ¢ is used for approximation,
it determines the order of approximation of this multiresolution analysis.
In addition, since ¢ € Vo C V; and {¢(2- —n): n € Z} is an unconditional
basis of V;, there exists a unique sequence {p,} € ¢? such that

$(t) = D pnd(2t —n). (3.9)

neZ

The Fourier transform equivalence of (3.9) is

d(w) = Pe/3(3), (3.10)
where \
P(z)=3 > pn2" (3.11)
neZ

is called the two-scale symbol of ¢. Of course, it is always desirable to have
a finite sequence {p,}, or by a simple shift, a polynomial two-scale symbol
P(z). Note that if P(z) is a polynomial with P(0) # 0 and degree P = N,
then it is easy to show that

supp ¢ = [0, N],

(cf. [26]). For instance, the two-scale symbol of the m*" order B-spline Ny,
is 27™(1 4 z)™ and the support of Ny, is [0, m].

The following result relating the order of approximation of ¢ and the
oscillatory property of the wavelet 1 is useful.

Theorem 3.1. Let (¢,%) be a pair that generates a multiresolution anal-
ysis {V,} and the orthogonal complementary spaces {W,} as described
above. Then the following statements are equivalent:

g

Charles K. Chui

(1°) The order of approximation of ¢ is m, in the sense that

. 1\™
inf lIf—gl|=0((2—,,) )

for all f € C™nN L2.
(2°) Dig(2nt) =0, L€ Z\{0},j=0,...,m—1.
(3°) The commutator of ¢ is of order m, in the sense that

lol¢l:= 9(i)é(- —3)— D #(5)g(- - 3)

JEZ JEZ

is identically zero for all polynomials g of degree < m — 1.
(4°) P(z) is divisible by (1 + z)™.
(5°) 3 (-1)"nip,=0,=0,...,m— 1.
neZ
(6°) [Z°, ziy(z)dz=0,j=0,...,m—1.

Of course, in the above statements, one must impose conditions on ¢ an
¥ such that all the infinite series and improper integrals exist. Conditior
such as ¢ and 9 having decay faster than O(|z|~™~!) are sufficient; but i
most practical purposes to be discussed later, they have exponential decz
or even compact supports. Statement (2°) is due to Schoenberg (cf. [41
but is usually called the Strang and Fix condition, since it was first studie
in the multivariate setting in [43] (cf. [7] for a somewhat detailed discussic
and a study of the commutator). Condition (4°) was discussed in [42], a1
(5°) easily follows from (4°). The oscillatory property (6°) of the wavel
1 can be explained from the fact that 1) € Wy and W LV}, and in view
(3°), polynomials of degree < m — 1 can be generated, at least locally,
¢ V.

Let us now discuss the relation between wavelets as introduced in t.
section and the integral wavelet transform (IWT) studied in Section 1
To do so, we need the notion of duals introduced in [19,20], as follows
function ¢ € Vj is said to be dual to ¢ € Vj if

(@ = m), o ) = [ T - m) BTt = b (3.

for all m,n € Z. Similarly, a function 1/.1 € W, is said to be dual to ¢ €
if
(W(- =m), (- —=n)) =bmn, m,n €L (3

Using the condition of unconditional bases, it is clear that q~5 and 1Z
unique. Now, recall from (1.3) that every function f € L? has a un
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orthogonal decomposition:

F=Y g gx€Wi
keZ

and in view of (3.7) and (3.8), we have

gk = d5n; (3.14)
jex

where again the coefficients df are unique. That is, we have a (unique)
wavelet series representation

£8) = din ;(t) (3.15)
k,j

for every f € L2. Now, by the definition of the dual in (3.13) and the fact
that 1y ; € Wi, and Wy LW, for all k # n, we have

(f,%r5) = d¥(Wr.j, vr5) = 27*d5. (3.16)

On the other hand, from the definition of the IWT in (2.7), we also have

= * ~(t—j27k —k/2 ok =k
(Fes) = | fOB(S5—)de =272y Gak 2 k). (3an)
Hence, by putting (3.16) and (3.17) into (3.15), we have:

FE) = ), 2¢*Wy (527, 27 %) 5(). (3.18)

kjeZ

That is, with the exception of the multiplicative constant 2k/2 the values
of the IWT of f with window function 1 at the dyadic time-scale positions
((7/2%), (1/2%)) constitute the wavelet coefficients of the wavelet series rep-
resentation (3.15) or (3.18) of f using the wavelet 1). Consequently, to find
the IWT of any f € L? at (b,a) = ((j/2%),(1/2%)), j,k € Z, we may
simply find the coefficients { 2k 2d;-“}. In the next section, we will discuss
a so-called decomposition algorithm for computing d;? via an approximant
fn of f from V. In addition, a so-called reconstruction algorithm for re-
covering fy from the IWT at ((j/2*),(1/27%)) and a “blurred” version
fN—m, M >0, of fy, will also be studied.
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1.4 Algorithms and Linear Phase Filtering

Let ¢ generate a multiresolution analysis of L? and v be a corresponding
wavelet. Recall that ¢ is uniquely determined by its two-scale relation
(3.9), and the two-scale symbol of the sequence {p,} that dictates this
formulation is defined by P(z) in (3.11), with a factor of 1/2 to facilitate
the Fourier transform formulation (3.10). Similarly, since ¢ € Wy C V; and
{#(2 - —n): n € Z} is an unconditional basis of V}, there exists a unique
sequence {g,} € ¢2 such that

B(t) =Y gnd(2t—n). (4.1)

neZ

The Fourier transform equivalence of (4.1) is given by

) = Qe M3 (3), (4:2)
with 1
Qz) =3 > gnz™ (4.3)
ne

For convenience, we will also call (4.1) the two-scale formula for 1 and Q(z)
the corresponding two-scale symbol of .

Next, let us consider the orthogonal sum V; = Wy & Vp. Since {¢(- —
n): n € Z} and {¢(- — n): n € Z} are unconditional bases of Vj and Wy,
respectively, there exist four (unique) sequences {a_2,},{b—2.}, {a1-2n},
and {b1—2n}, n € Z, such that

{ d(2t) = Y ,emla—2nd(t —n)+b_2nt(t —n)] (4.4)
$2t—1) = 3, cglar—and(t —n) +biogn(t — n)]. '
Hence, for any ¢ € Z, we have
$(2t—£0) = Y [ar-208(t — 1) + be-2at(t — n)]. (4.5)
neZ

So, since the functions ¢y o = ¢(2-—¥¢), £ € Z, form an unconditional basis
of V1, the two sequences {a, } and {b,}, n € Z, in (4.5) uniquely determine
the orthogonal decomposition V; = Vp @ Wy. Let us also consider their

symbols:
G(z)= ) a_nz" (4.6)
neZ
and ’
H(z)= ) b_n2" (4.7)

neZ
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Observe that we have not multiplied by the factor 1/2 in (4.6) and (4.7),
and in addition, a negative sign in the index is used. '

Now, by using the notation in (3.6) and (3.8), the decomposition for-
mula (4.5) can be written as

Drt1,e = Z [@¢—2nPk,n + be—2nWk n], (4.8)
neZ

for all k,¢ € %, and the two two-scale formulas (3.9) and (4.1) can be
expressed as
Znezpn—2l¢'k+l,n;

Pr,e
"pk,( = ZHEZ Qn—28¢k+1,n;

for all k, £ € Z. Since (4.9) will be used for deriving the reconstruction algo-
rithm, the two-scale sequences {p,} and {gn} are also called reconstruction
sequences.

Let fry1 € Viy1 be decomposed as

Il

(4.9)

frr1 = fi + gk (4.10)

where fi, € Vi and gy € Wy, and for any n € Z, write

{f" = Ly ns (4.11)
o {c;‘}
and
{g" = 2% (4.12)
dr» = {d;‘}

as in (3.14). Then by applying (4.8), the left-hand side of (4.10) can be
written as

k+1
Z C§+l¢k+1,j = Z Cj+ Z[a]‘—2n¢k,n + bj—Zn"/)k,n]
J J n

= Z [(Z an—ZjCﬁH) br,; + (Z bn—zjcﬁ“) d)k,j] )

j n
while the right-hand side of (4.10) is simply

> [, + djnl-
;

e
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Hence, it follows from Vo LW, and the ¢*-linear independence of {¢x ;};ez
and {tx,;};ez that

k — k+1
G = Zna'z.c
{ ’ e (4.13)

k
di = Y, bugjeltt.
This yields the following wavelet decomposition (pyramid) algorithm:
dN—l dN—Z dN-— M
N-1 N-2 . N-M
for computing the orthogonal decomposition

IN=gN1® - BIN-MD fN-M (4.14)

described in (1.4).
On the other hand, by applying (4.9), the right-hand side of (4.10) can
be written as

Z Z[cfp"-%'d’kﬂ,n + den—2j¢k+1,n]
i} n

- Z Zp]-_zncﬁ+zf1j-2ndfz Pr+1,5

J

while the left-hand side of (4.10) is

k+1
Z ¢ Prt1,5-

3
Hence, it follows from the £2-linear independence of {¢+1,;}, j € Z, that

St = (pj-anch + gj-20dk)- (4.15)

This yields the following reconstruction (pyramid) algorithm:

dN—M dN—M+1 dN—l
N N
cN-M ., N-M+1 __, ... _, ¢N-1 __, (N
for computing fy from gy_1,...,9nv—n and fy_p in (4.14).

Of course, in applications, the orthogonal wavelet components

gN-1,--- gN-M
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and the blurred component fy_ps of fy are “reduced” for storage or trans-
mittance, or they might be “filtered”, before applying the reconstruction
algorithm. In any case, the efficiency of the decomposition algorithm (4.13)
and the reconstruction algorithm (4.15) depends on the sequences {pn},
{qn}, {an} and {b,}. The shorter these sequences and the smaller number
of decimal places in their terms, the more efficient are the algorithms. For
the purpose of implementation, any infinite sequence must be truncated
and any irrational term must be replaced by a reasonable rational num-
ber. Hence, in choosing (¢,%), the above discussion must be taken into
consideration. Another aspect that should also be taken into considera-
tion, especially in many applications in signal analysis, is the problem of
“distortion”. As is well known in signal processing (cf., Oppenheim and
Shaffer[39]), distortion can be completely avoided if the filtering function
(or sequence) have linear phase or at least generalized linear phase.

A filtering function f(t) € L' N L? is said to have generalized linear
phase if its Fourier transform has the formulation:

flw) = A@w)eil®*?),

where A(w) is real-valued and a,b are real constants. It is said to have
linear phase if A(w) = |f(w)| and b = 0 or ; that is,

fw) = lf(w)let*.

Similarly, a filtering sequence {f,} € ¢' is said to have generalized linear
phase if its discrete Fourier transform

F(w):= Z fne™

can be written as ‘

F(w) = A(w)ei(@ )
where A(w) is real-valued and a,b are real constants. It is said to have
linear phase if

F(w) = £|F(w)]e™™.

In Chui and Wang[20], the following characterization result was established.
For simplicity, we only consider real-valued f(t) and {fn}.

Lemma 4.1. Let f(t) € L' N L? and {f.} € ¢* be real-valued. Then the
following statements hold.

(1°) f(t) has generalized linear phase if and only if it is either sym-
metric or antisymmetric about some to.

e S

pom R

G
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(2°) {fn} has generalized linear phase if and only if it is either sym-
metric or antisymmetric about some ng € %,Z.

(3°) {fn} has linear phase if and only if there is some ng € Z such
that F(w)e™*™“ js real-valued, even, and has no sign changes.

To apply this lemma to studying the phase properties of wavelets, it is
best only to consider wavelets with minimum supports, since the increase
in support allows too much flexibility in changing the phases. The following
result was obtained in [20].

Theorem 4.2. Let ¢ generate a multiresolution analysis of L? such that
the two-scale sequence {p,} of ¢ is finite and real-valued. Also, let 1) be a
corresponding wavelet with minimum support and let v be the dual of 1.

Then

(1°) if {pn} has generalized linear phase, both v and 1/7 have general-
ized linear phases, and

(2°) if {pn} has linear phase, both v and 9 have linear phases.

For more details, the reader is referred to [20].

1.5 Orthogonal Wavelets

As usual, let ¢ generate a multiresolution analysis {V,,} of L? and 9 be
any corresponding wavelet that generates the orthogonal complementary
subspaces {W,}. Then it follows that for all j and ¢ € Z, we have Yr,j Ln e
whenever k # n. Note, however, that in general, ¥, ; is not orthogonal to
Y for j # L. If 4(-—7) is orthogonal to ¢(-—¥¢), j # £, and ||¢)|| ;2 = 1, we
say that 1 is an orthonormal wavelet. In other words, % is an orthonormal
wavelet if and only if {2%'¢k,]’}, k,j € &, is an orthonormal basis of L2.

From ¢, it is quite easy to find an orthonormal wavelet. Let us first
establish the following two lemmas.

Lemma 5.1. . Let 0 < A < B < 400 and § € L?. Then the following
statements are equivalent:

(1°) For any ¢ = {c,} € ¢2,

2

Allell7 < (| ené(- = n)

neZ L2

< Bllellz,

and hence, {£(- — n): n € Z} is an unconditional basis of the L*-
closure of its span.
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(2°) The Fourier transform £ of £ satisfies

AL Z |é(w + 27n)|> < B almost everywhere.
neZ

(Of course if ¢ € L' N L?, then é is continuous so that the above
inequalities hold for all w.)

Proof. For any ¢ = {c,} € £, we denote its discrete Fourier transform by

C(w) = Z cne'™.

n

Then by the Plancherel Identity, we have

2

1 .
Soebt4n)| = lCéR
neZ L?
1 27 .
= — [ [CW) Y €(w+2mn)Pdw. (5.1)
2T 0
neX
Hence, since
2 1o 2
lelle = 57 | 1CG)Pds,

(1°) clearly follows from (2°). The converse is also an easy consequence of
(5.1), since C(w) is an arbitrary 27-periodic function in L2(0, 27). ]

Lemma 5.2. For any £ € L?, the following statements are equivalent:

(1°) {&(- = n): n € Z} is orthonormal in the sense that
/ £(t — m)E(E = M)dt = by

for all m,n € Z.
(2°) For allk € Z,

1 [ . ;
o | E@Pe*d = b
(3°) For almost all w,

Z |é(w + 2mn)|? = 1.'

neZ

T
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Proof. Consider the nonnegative 27-periodic function

Fw):= Y éw+2mm)?,

neZ
which is clearly in L!(0,27). In fact, its k*® Fourier coefficient is given by

27
L[ Pwetdn = 2

27 Jo ﬂo

_oA T e e ke
= 3 /_oo [E(w)|*e dw

27
Z |€(w + 27n)|2e* dw
neZ

= : E(w)Ew)edw
- [ cwga—ma

- [ ce-mEe—ma,

where k = n — m. This sequence of identities also completes the proof of
the lemma. [ |

We now return to an arbitrary ¢ € L' N L? that generates a multireso-
lution analysis of L2, so that {¢(- — n): n € Z} is an unconditional basis
of Vp. By Lemma 5.1, the function ¢*, whose Fourier transform is defined
by
p(w) (5.2)

127
( ¥ Ipw + 27”1)12)

neZ

(W) =

is also in L' N L2, and from (5.2) it is easy to verify that ¢ lies in the L?
closure of the linear span of

{¢*(- —n): n e Z}. (5.3)
Since ¢* clearly satisfies (3°) in Lemma 5.2 for all w, the family (5.3) is

an orthonormal basis of V;, so that ¢* generates the same multiresolution
analysis of L? as ¢. In particular, ¢* has a two-scale formula:

¢*(t) =Y pis*(2t—n), (5.4)

neZl
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where {p}} € ¢2 is uniquely determined by ¢*. We are now able to con-
struct an orthonormal wavelet ¥* as follows:

V(@)= Y (—1)"pl_nd"(2t - n). (5.5)

neZ

Before we show that 1* is indeed an orthonormal wavelet for this mul-
tiresolution analysis, let us first establish an identity for the two-scale sym-
bol

P'()i=3 Y phe

neZ

of the orthonormal multiresolution analysis generator ¢*.

Lemma 5.3. We have

PP +|P* (=) =1, [o] =1, (5.6)

Proof. By Lemma 5.2, since ¢* is orthonormal, we have, for all z = e~/2

1= Yt 2m)p

neZ

X et (2o
neZ

= Z P*((-1)"2)¢* (%-Fwn)r
neZ

- |P*(z)¢‘s* (§+27rk>~2
keZ

+ Z ‘P"(—z)q;* (% + 7+ 27rlc)‘2
keZ
= PER+IP-R =

We are now ready to verify that ¥* is an orthonormal wavelet.

Theorem 5.4. Let ¢* be defined as in (5.2) and suppose that ¢* generates
the same multiresolution analysis {V,,} of L? as ¢. Then ¢*, as defined in
(5.5), generates the orthogonal complementary subspaces W,.
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Proof. The proof of this theorem is divided into three steps as follows.

(i) To verify that ¢* € Wy, let n € Z be arbitrarily chosen. Then we have,
from (5.4) and (5.5),

(@ (=n)9*) = Y pi(-1)*pi_i(¢*(2- —1), 4" (2 +2n — k))

J,k€Z

1 * *
= 3 Z (—=1)*PZ 5 kDT s
kEZ
1 —Jj+2n,_x * )
= 5 Z(—l)l e P1-iP—2n+;j»
JEXL
which must be zero, since the last quantity, which is obtained by the change
of index j = 1 — k — 2n, is the negative of the quantity preceding it. This
elegant observation, which holds for all #2 sequences {px} regardless of the
orthogonality property, is given in [42].
(ii) To show that
{#*(- —n): ne Z}
is orthonormal, we first note that the Fourier transform formulation of (5.5)
is

@)= 3 TP ) § (2),

neZ

so that, with 2 = e=*/2 we have

%" ()| = |P*(~2)|

i w
# G
Hence, following the same proof as that of Lemma 5.3 and applying (5.6),

we have
>t (w+2m)? = 1,
neZ

or {*(- = n): n € Z} is orthonormal.

(iii) Finally, to show that {¢*(- — n): n € Z} spans Wy, we will do a
little more by exhibiting the decomposition relationship of V} = V@ W,
as follows. Let us set

an = Lip*
{ 2 (5.7)

b, = %(—l)npf—n
Then it is sufficient to establish:

¢ (2t —k)= Y ar-2nd"(t—n)+ Y be_ga¥(t—n)  (5.8)

neZ neZ
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for all k € Z. Note that with z := e~%/2 the Fourier transform equivalence

of (5.8) is given by

L5(2)-

Zak_znzz" ¢*(w) + Zbk—anzn 12*(“)-

neZ neZ
On the other hand, recall from (5.4) and (5.5) that
{ #w) = P2)¢" (%)
P o= e (3

where z = e~*/2 and

BN =

Q*(2) =35 > pi-n(—2)" = —2P*(z). (5.10)
neZ

Hence, by using the definition of {a,} and {b,} in (5.7), the identity (5.9)
is equivalent to

(Zﬁ) P*(z) -2 (Zp:_mn(—zf"-k) P*(~2)

2P; (2)P*(2) + 2P, (—2)P*(-=2), (5.11)

._.
Il

where

P*(z) + P*(—=z)
2

P*(z) — P*(—=z)
2

for even k
Pi(z) :=
for odd k&

Since it is clear that (5.11) is equivalent to the identity (5.6) for |2z| = 1,
we have established (5.8). [

In the above derivation, we have also obtained the following result.

Corollary 5.5. If a multiresolution analysis generator ¢ is orthonormal,
then an orthonormal wavelet 1) can be chosen such that the two-scale (or re-
construction) sequences are {p,} and {(—1)"p1—,}, and the corresponding
decomposition sequences are {p,/2} and {(1/2)(=1)"p1_n}.

For more details, see [9,24,25,33,38]. Let us now discuss some specific

examples.
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Example (1°) The Battle-Lemarié wavelets.

By using the m'* order B-spline N,, as ¢ in (5.2), the orthonormal
wavelet 17, := 1" in (5.5) is uniquely determined. In fact, an explicit for-
mula for 9%, can be found in Lemarié [32] and Battle [2]. Battle’s deriva-
tion, however, is quite different: instead of orthogonalizing ¢ = N,, to
yield ¢* and consequently 3%, as (5.2) and (5.5), %, is obtained by first or-
thogonalizing the scale levels, using the so-called “block spin” assignments,
and then orthogonalizing the translates. It should be remarked, however,
that with the exception of the Haar (wavelet) function which is obtained
from the first order B-spline Nj, there is no explicit formula for any of
the other orthonormal spline wavelets Ym, although a very nice (but fairly
complicated) expression of their Fourier transforms 97, is given in [2] and
[32]. Also, although the orthonormal spline wavelets do not have compact
supports, they all have exponential decay. Of course, as is well known from
the Phase-Space Localization theorem, ¥, cannot decay exponentially.

Example (2°) The Meyer wavelets.

The wavelets ¢ constructed by Meyer [37], on the other hand, have the

property that their Fourier transforms v have compact support. In fact,
Meyer’s construction is based on ¢ instead of ¢.

Let 0 < e < % and define fj(w) = 0 for |w| > 7 + ¢, and H(w) = 1 for
|w| < ™ —e. There is a lot of freedom for choosing Hw),m—e < |w| < T+e.
We pick two arbitrary constants A, B with 0 < A < 1 < B < 0o and select
7 € CN (where 0 < N < oo is also arbitrarily preassigned), such that

A< Y liw+2mm)? < B
neZ

for all w. Then the function ¢ defined by
: f(w)
Bw) = = (5.12)
> |A(w + 2mn) 2
neZ

clearly satisfies

D 1w+ 2mm)? =1

neZ

for all w, and supp ¢ = [-m — &,m + €]. In addition, by Lemma 5.2,
{¢(- —n): n € Z} is an orthonormal set. Now, define

P(em/?) .= Z P(w + 47n)

neZ
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and the corresponding sequence {p,} so that

l n
P(z) =3 > paz™. (5.13)
neZ
We claim that
hw) = P(e™™/?)$ (2 5.14
dw) = P/ (3) (5.14)
which is, of course, equivalent to
$(t) =Y _pnd(2t —n). (5.15)

To verify (5.14), we first note that for w ¢ supp ¢, then

P(e™/?) = Z $(w + 47n)
n#0
so that either ¢(%) = 0 or else P(e~*/2) = 0. That is, (5.14) is S'fltisﬁed
with 0 = 0. On the other hand, if w € supp ¢, then we have P(e~%/2) =
$(w) as well as f(w + 27n) = 0 for all n # 0 which yields, using (5.12),
¢((w/2)) = 1. Hence (5.14) holds.

In addition, since ¢(0) = 1 and ¢(27n) = 0 for all n € Z\{0}, it follows
from Theorem 3.1 that ¢ generates a multiresolution analysis of L%. Recall
that {¢(- — n): n € Z} is orthonormal, and therefore is an unconditior}al
basis of Vy. Now, the corresponding orthonormal wavelet 1) has Fourier

transform
e ; AW
B(w) = (% Z(—l)"m_ne—ﬂwf'L’) $(3)

where {p,} is defined in (5.13). Hence, we have
supp ¥ = [-27 — 2¢, 2 + 2¢].

We remark that () has decay O(|t|~*), where a > 0 is arbitrarily large
if we require n € C*°.

Example (3°) The Daubechies wavelets.

While Meyer’s orthonormal wavelets have compactly supported Fourier
transforms, the orthonormal wavelets constructed by Daubechies in [24]
are compactly supported. The basic strategy in Daubechies’ construction
is to solve the two two-scale equation

$(t) =Y pad(2t —n) |

neZ

subject to the following constraints:
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(i) ¢(0) = [, ¢(t)dt = 1;

(ii) {pn} is a finite sequence;
(iii) 3" p2ntrBr = 26n0, n € X;
k

(iv) the infinite product
H P(e—i2‘kw),
k=1

where P(2) = § 3" pn2™ denotes the two-scale symbol of {pn}, con-
verges uniformly on compact subintervals of IR.

It is easy to see that the support of ¢ is the convex hull of the support of
{pn}. In addition, condition (iii) is equivalent to (5.6) which is a necessary
condition for the orthogonality of {¢(- — n): n € Z}. Of course, the con-
vergence of the infinite product is essential, since under the condition (1),
this limit is the required ¢(w). Once $(w) and P(z) are determined, the
compactly supported orthonormal wavelet 1 is defined in the same manner
as (5.5). Of course, one cannot expect to have an explicit formulation of
Daubechies’ wavelets. However, efficient recursive computational methods
are available in the literature such as [3]. An interesting result in [24] is
that with the exception of the Haar function, Daubechies’ compactly sup-
ported orthonormal wavelets are not symmetric nor antisymmetric about
any point; and hence, from Lemma 4.1, they do not even have generalized
linear phases.

1.6 Spline Wavelets and Biorthogonal Bases

When wavelets 1 were introduced in Section 1.3, it was already implicit
that wavelets with different scales are always orthogonal, namely:

W2k —0), 92" —j)) =0

for all £, j,k,n € Z as long as k # n. In order to relate the wavelet series
with the integral wavelet transform (IWT) introduced in Section 1.2, dual
wavelets 17;, defined by 1), 12; € Wy and the biorthogonal relationship (3.13),
were introduced. Of course, if 9 is orthonormal, then ® is self-dual, namely:
¥ = 9. In an attempt to give explicit and very simple expressions of 1), we
bypass the orthogonalization procedure (5.2) to construct ¢ more directly.
This point of view was first considered by Chui and Wang in [18] for poly-
nomial splines using fundamental cardinal splines; and in [19], compactly
supported spline wavelets and their duals were first constructed. A general
theory that characterizes wavelets for an arbitrary multiresolution analysis
is given in [20].
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Recall that in the discussion of orthonormal wavelets, the single most
important quantity is the two-scale symbol P(z) of {p.}, since from P(z),
the two-scale symbol for the corresponding orthonormal wavelet is given

by

Q(z) = —2P(=2), || =1; (6.1)
and the symbols of the decomposition sequences {a,} and {b,.} are simply
G(z) = Y anz7" = P(2), |2z| =1;
neZ 6.2
H(z)= Y bpz~"=—2P(-2), |2|=1, (62)
neZ

(cf., (5.7)~(5.11) for the derivation).
In the general setting, however, we seem to have some freedom in choos-

ing Q(z), but the decomposition symbols G(z) and H(z) are then governed
by P(z) and Q(z) through the identities:

{ P(2)G(2) + Q(2)H(2)

|
o
~
[
“D—l

(6.3)

|

e

~
I

P(2)G(-2) + Q(2)H(-2)

These identities are consequences of the two-scale formulas (3.10), (4.2) and
the decomposition formula (4.5). For simplicity and all practical purposes,
we only restrict our attention to finite two-scale sequences {p,}; that is,

we only consider polynomial symbols
L N
P(z) =5 pnz", po#0,pn#0, (6.4)
2 n=0

where a shift has been applied to ¢. For instance, for the m' order B-
splines N,,, the two-scale symbol clearly satisfies

(=) - ()

. 1+z\™
PL(2)= .
©=(%)
So, how much freedom do we really have in the choice of Q(z), given a
two-scale symbol P(z)? To answer this question, we need the notion of the

generalized Euler-Frobenius polynomial Il of the multiresolution analysis
generator ¢ introduced in Chui and Wang [20] as follows. Let

where z = e"™/2 or

Yo(n) = /_ a é(n + z)¢(z)dz.
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Then it is clear that Yo(— = 7, i m
' o ( n) #(n). Also, since it follows fro h
i ) t
.two scale formula of ¢ and (6.4) that supp ¢ = [0, N ], it is also clear tha,te

supp 74 C [~N, N].

Let 0 < k4 < N be such that su
S ks < PP V¢ = [—kg, ky]. Then th i
Euler-Frobenius polynomial of ¢ was defined ifl [;(;] by o e generalized

2k,
Ty(2) = 3~ ye(n — ky)2". (6.5)
n=0
gorl instance, .if¢ =N, is. the mth order B-spline, then ¢y is the classical
uler-Frobenius polynomial multiplied by a factor of [(2m~ )I!B:
2m—-2
Tom-1(2) i= (2m = 1)1 3 Nop(j + 1)27 ; (6.6)

=0

and for any orthonormal =1, si
ek mal ¢, we have IT4(2) = 1, since kg = 0. Consider the

Bey(2) := zN_k"'—llId,(z)P(z), (6.7)

- where P(z) denotes the reciprocal polynomial of P(z), and factorize By

into
Bo(2) = na(2)Ae(2?), (6.8)

;vh;re K¢, Ay are polynomials with A¢(1) = 1, u4(z) not divisible by 22
nd u4(z) has no non-zero symmetric root in the sense that pg(z9) = (;

and z 0 impli _ .
[20]. o # 0 implies p4(~z0) # 0. The following result was established in

T
etlleortemhﬁ.l. The class of all two-scale symbols for the wavelets that
generate the orthogonal complementary subspaces W., is given by

Q) = u(-aW (), (©9)

where W is analytic in a neighborhood of |z| = 1.

IOI lnstance let us agaln consi p me exaﬂlp ¢ - m
) g del the S l Ie Whe (S
! ¢ln (a' ) becomes N ’ '

Ao 1 1+2\™
53 = gy (F52)  Mames(2) = (o)



