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CHAPTER 1

Introduction






QUANTUM TRANSPORT IN NANO-STRUCTURED
SEMICONDUCTORS

A Survey

BERNHARD KRAMER

L. Institut fir Theoretische Physik
Universitdt Hamburg
Jungiusstrafie 9

D-20355 Hamburg, Germany

Abstract. The quantum transport effects in semiconductor nano-structu-
res discovered during the past two decades are summarized. Brief physical
arguments for their explanation are provided. Possible directions of future
research are outlined.

Due to their unique adjustability’ of charge carrier density by exter-
nal means, semiconductor inversion layers have been proven to provide an
outstanding laboratory for the investigation of quantum mechanical phe-
nomena in condensed matter. During the past two decades, a great variety
of hitherto unforeseen quantization and coherence effects in their electrical
transport properties have been discovered. The most prominent example is
the quantum Hall effect. The finding of the quantization of the Hall conduc-
tivity of MOSFETSs in integer multiples of e?/h at low temperatures and
sufficiently strong magnetic fields initiated an ”industry” of experimental
and theoretical research. The Integer Quantum Hall effect established a
completely new tool for the investigation of localization phenomena. The
subsequent discovery of the Fractional Quantum Hall effect gave rise to to-
tally unexpected developments concerning the effects of the Coulomb inter-
action. Novel phases of the interacting two dimensional electronic system,
like the "incompressible electron fluid”, were found. New routes to well
known concepts like the Wigner crystal suddenly became experimentally
accessible.

With refined preparation techniques, it became possible to prepare in-
version layers that are laterally structured. Quasi-one dimensional inversion
layers exhibit unique quantization and fluctuation phenomena. Systems of
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two—dimensional point contacts were designed to form islands of electrons,
quantum dots, which showed characteristic oscillatory transport behavior
— signature of the Coulomb repulsion between the electrons. Arrays of
quantum dots were discovered to allow for the systematic experimental
study of signatures of chaos in quantum systems. The long—standing the-
oretical prediction of persistent currents in normally conducting metallic
systems was experimentally verified by using a structured inversion layer
imbedded in a AlGaAs/GaAs—heterostructure. Even nowadays the field is
still rapidly evolving. No saturation of the activities is yet in sight. Practi-
cally every year a new effect is reported in the literature.

In the following, a brief survey of the quantum transport effects in nano—
structured semiconductors which were discovered during the past two deca-
des is given [1]. Emphasis will be on those aspects which are not discussed
in the articles. Topics which are explained in detail in the later chapters
will only be briefly addressed.

1. The Mesoscopic Regime
1.1. FROM DIFFUSIVE TO QUANTUM TRANSPORT

The classical charge transport in metals is described by the Drude theory
[2]. The basic result is that the DC—conductivity of a metal is

o= ; (1)

with the density of the electrons (charge —e) n, the effective mass m and
the mean free time 7. The latter incorporates all of the scattering processes
the electrons suffer from static impurities, vacancies and dislocations, and
also from other elementary processes like electron—-phonon and electron—
electron scattering. The basic assumption behind the Drude theory is that
scatterings are incoherent: the electrons, ”after having suffered a collision,
do not remember that they existed before”. Subject to the influence of
the electric field, they move diffusively through the lattice of the metal
ions. One of the consequences of this is Matthiesen’s rule, stating that the
contributions of different scattering processes are independent and additive,
i. e. the total scattering rate is given by the sum of the corresponding rates.

At sufficiently low temperatures this assumption breaks down. The
quantum mechanical nature of the electrons comes into play. Incoherent
processes that destroy the ”phase memory” of the electrons, as electron—
phonon scattering, are more or less frozen out. What remains is scattering
at the impurities which is not incoherent. The quantum mechanical state
of an electron depends on the configuration of all of the imperfections.
This important fact, which is the backbone of the physics of almost all of
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the mesoscopic transport phenomena, became obvious only about twenty
years ago when at temperatures close to absolute zero the weak localiza-
tion correction to metallic conduction in thin metallic films — quasi-two
dimensional metallic systems — was discovered [3].

The thickness of the inversion layers in semiconductor hetero—structures
is of the order of 5nm. Therefore, they can be considered as almost ide-
ally two dimensional. They are perfect laboratories for the investigation of
quantum coherent transport phenomena because it is possible to change
the electronic properties by doping, and the electron density by applying
an external gate voltage, in contrast to metallic systems. In addition, the
lateral structure of the inversion layers can be systematically influenced by
voltages at external gates. This enables us to construct single point contacts
and also small islands of confined electrons — "artificial atoms” — which
show transport quantization properties that are not at all predicted by the
semi-classical theory, and they are ezternally tunable [4]. The arsenal of
tools for the systematic investigation of quantum transport effects in struc-
tured semiconductors is completed by externally applied magnetic fields.
This causes a number of additional, most surprising effects which are also
not foreseen when using the semi-classical theory of electron transport.

1.2. MESOSCOPIC LENGTHS SCALES

There are several lengths scales which can be used to characterize the meso-
scopic transport regime. The presence of imperfections in a metallic system
gives rise to the elastic mean free path

£ = vpT (2)

with the Fermi velocity vg. It is the only limiting length for transport at
T = 0 and is independent of the temperature. The mean free time 7 has
to be determined by quantum mechanical theory. If the perturbation in-
troduced by the impurities is only weak one can use perturbation theory.
In lowest order, 77! o« V2 where V is the random impurity potential. It
is very important to note here that the elastic mean free path has nothing
to do with the destruction of phase coherence. In principle, the underlying
impurity scattering can be exactly taken into account by diagonalizing the
Hamiltonian of the electron in the presence of the impurity potential. In
metallic systems, £ is usually of the order of nanometers. In very pure semi-
conductor hetero—structures the mean free path can be much longer than
10pum, several orders of magnitude larger than the interatomic distance!
At finite temperatures, there are basically two additional limiting influ-
ences on the transport. First of all, the conductivity is an average over the
states within an interval AF « kT near the Fermi level, as one can easily
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Figure 1. Diffusive motion of a particle in an impure metal at a temperature close to

absolute zero under the influence of impurity scattering (mean free path ¢ = vpr), and
rare phase randomizing scattering processes (shaded circles, phase coherence length L,).

see by using the Kubo formula. Since the phases of different eigenstates
are completely independent, we expect a decay of the average correlation
function on a time scale

mr(T) o (KT)~ . (3)

This is usually interpreted as a temperature—induced phase coherence time.
On the other hand, interactions with other elementary excitations as phonons
or the Boson-like pair excitations of the electrons, lead to mixing of the
one-electron states. These scatterings are in general inelastic and therefore
lead to phase incoherence with a temperature dependent characteristic time
7;(T) which is the mean free time between inelastic scattering events. If one
assumes that at low temperatures phase randomizing processes are suffi-
ciently rare in comparison with the mean free time due to the impurities
one can determine a phase coherence length by assuming diffusive trans-
port — due to the impurity scattering — between two phase destroying
scattering events (Fig. 1),

L,=+/Drt

¥ ¥

(T). (4)

The phase coherence time 7, is the mean free time between two successive
phase randomizing events. The diffusion constant D contains only the im-
purity scattering which does not destroy quantum coherence. It is related
to the residual conductivity via the Einstein relation .

o =¢é*pD (5)

where p is the state density at the Fermi energy. In general, the relation
between 7, and L, is more complicated. For instance, in the hopping region,
where D =0, L, is given be the mean hopping distance.

The temperature dependence of L, is determined by the nature of the
contributing scattering processes and is presently a subject of the research
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world-wide. The understanding is far from complete. Generally, one as-
sumes for the phase coherence time in a metal (D # 0)

To(T) & TP (6)

with 1 < p < 5 depending on the nature of the scattering, the temperature
and other parameters. At low temperature, the smallest of the phase coher-
ence times limits the transport. If p > 1, the phase coherence at very low
temperatures is eventually given by 77 o (kT')~! such that L, o< T~1/2.

It is now easy to provide a criterium for mesoscopic transport: the tem-
perature has to be so low that L,(7") > L, the geometrical diameter of the
sample. Typically, in metals L,(1A) = O(1um). In semiconductor systems,
especially when a magnetic field is applied, L, can be considerably larger.
We can also specifiy now what we mean by a d-dimensional mesoscopic
system: if the thickness of the system in, say, the z—direction is smaller
than L, we have a two dimensional system. When in addition L, is larger
than the extensions in the z and y—directions, the dimensionality will be
further reduced to d = 1 and d = 0, respectively.

2. Mesoscopic Transport Phenomena

2.1. THE INTEGER QUANTUM HALL EFFECT

The Quantum Hall Effect was discovered in 1980 by Klaus von Klitzing
when he investigated the magneto-transport properties of the inversion
layer in a Silicon MOSFET at low temperature (7' ~ 1K) and at high mag-
netic field (B = 20T) [5]. He found that when the (negative) voltage at
the gate of the transistor was increased, the Hall voltage did not decrease
monotonically. Such a decrease is indeed expected according to the classical
theory of the Hall effect, when assuming that the charge density in the in-
version layer decreases monotonically with increasing gate voltage. Instead,
the Hall voltage was found to remain constant in certain regions. Here, the
voltage parallel to the source-drain current turned out to be unmeasurably
small. The corresponding values of the Hall resistance Ry were precisely
_ given by integer fractions of Ry = h/e?,

.

1
Ry=<Rx (i=123,). (7)

The Hall conductance I'; = 1/Ry is then quantized in units of e?/h, the
Sommerfeld constant.

While the relative accuracy of the quantization in first experiment was
only of the order of e few 1076, later experiments, done at lower tempera-
tures, 7' ~ 50mK, and different samples, AlGaAs/GaAs hetero—structures,
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showed a dramatic increase in precision. Nowadays, the reproducibility of
the plateaus is better than 1078 such that the Quantum Hall Effect is used
as a standard for the electrical resistance.

A number of fundamental questions emerged as a result of the discovery
of this first of the quantization effects in electrical transport. One of the
conclusions of the weak localization theory of transport was that two di-
mensional disordered quantum systems at zero temperature cannot conduct
the electrical current due to strong enhancement of quantum backscatter-
ing. All of the quantum states are localized. Under these conditions, it
was hard to believe that such a precise, material-independent quantization
effect could exist. The only way out was the assumption that the strong
magnetic field delocalized at least a few of the states [6].

This hypothesis could be confirmed by later numerical calculations [7].
The results showed that indeed all of the states in two dimensional disor-
dered systems in a strong magnetic field are localized. However, the local-
ization length was found to diverge in the centers of the Landau bands,
FE =0, with a power law

Mol E7Y, (Ao = constant). (8)

The critical exponent was quantitatively determined, v = 2.34 4 0.04, and
shown to be universal, i. e. independent of the nature of the randomness,
and the Landau band index. By using this divergent behavior and assuming
that the largest possible localization length in the system was the temper-
ature dependent phase coherence length it turned out to be possible to de-
termine, for instance, the temperature dependence of the widths of the Hall
plateaus. The results were consistent with the experimental findings. Fur-
ther experiments done on samples with different geometrical sizes yielded
even a value for the exponent that was consistent with the above result [8].

Basically, the existence of the singularities of the localization length in
the centers of the Landau bands my be qualitatively understood by consid-
ering the percolation limit: for an extremely high magnetic field the mag-
netic length {p = (h/eB)l/2 is small compared with the spatial correlation
length of the random potential. Then one can show that only the Landau
states centered at the positions corresponding to the randomly percolating
equi—potential lines defined by V(rg) = E contribute to the eigenstates at
energy E in the presence of disorder [11, 12]. The localization problem is
reduced to a percolation problem: the ”landscape” of the random poten-
tial is filled with water up to a given level — the energy of the state. The
shore lines correspond to the equi—potential lines. For low water level, there
are only isolated lakes. All shore lines are closed. The states are localized.
Correspondingly, for high water levels, there are isolated mountains in a
sea of water. Again all of the shore lines are closed, and the corresponding
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states localized. It is intuitively clear that there must be exactly one water
level at which one can reach two different edges of the system by travelling
along the shore lines. This corresponds to the percolation threshold, and
represents the energy where the localization length diverges.

In this way, the integer Quantum Hall Effect was identified as a degen-
erate metal-insulator transition. Although there is no predictive theory up
to now which explains why the plateaus in the Hall resistance are practi-
cally ezactly given by integer fractions of the von Klitzing constant Rk, a
large number of new quantum properties were discovered when attempting
to find such a theory. A most important discovery of the past years was
that the states at the critical point have multifractal properties [9, 10].

A further important discovery was that in two dimensional systems in a
strong magnetic field quantum coherent edge states play an important role
for the understanding of magneto-transport [13, 14]. In the above picture
of the landscape filled with water they can be vizualized by considering a
landscape with boundaries represented by infintely high walls. Then one of
the shore lines goes around the whole system. In the semi—classical picture
of magneto-transport edge states correspond to the so—called "skipping
orbits” which are essentially cyclotron orbits travelling along the edges.

Edge states can have coherence lengths even of several hundred microm-
eters due to the absence of backscattering induced by the magnetic field.
They might play an important role for the explanation of the precision of
the Quantum Hall Effect.

2.2. FRACTIONAL QUANTUM HALL EFFECT

The integer Quantum Hall Effect initiated numerous experimental and the-
oretical investigations of the two dimensional electron systems in semicon-
ductor hetero—structures. A very important discovery only a few years later
[15] was the fractional Quantum Hall Effect. In highly pure AlGaAs/GaAs
samples with electron mobilities higher than, say 100000 Vem/s?, the Hall
conductance was found to be quantized at certain rational multiples of €* /A,

2

ﬁ = g% (p, q integers). (9)
First attempts to explain the additional plateaus which appeared at the
rational filling factors v = nh/eB = p/q within the one-electron approxi-
mation failed. Very rapidly, it became clear that the Fractional Quantum
Hall Effect was a direct manifestation of the electron—electron interaction
in the two dimensional system subject to the strong magnetic field. There
have been several attempts to construct the many particle states for this
system [16, 17]. Numerical diagonalizations of several interacting particles



