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Differential Geometry of Singular Spaces and Reduction of Symmetry

In this book, the author illustrates the power of the theory of subcartesian differ-
ential spaces for investigating spaces with singularities. Part I gives a detailed and
comprehensive presentation of the theory of differential spaces, including integration
of distributions on subcartesian spaces and the structure of stratified spaces. Part II
presents an effective approach to the reduction of symmetries.

Concrete applications covered in the text include the reduction of symmetries of
Hamiltonian systems, non-holonomically constrained systems, Dirac structures and the
commutation of quantization with reduction for a proper action of the symmetry group.
With each application, the author provides an introduction to the field in which relevant
problems occur.

This book will appeal to researchers and graduate students in mathematics and
engineering.

J. SNIATYCKI is a Professor in the Department of Mathematics and Statistics at the
University of Calgary.
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Preface

My first encounter with differential spaces was in the mid 1980s. At a con-
ference in Torun, I presented the notion of algebraic reduction of symmetries
of a Hamiltonian system. After the lecture, Constantin Piron asked me if my
reduced spaces were the differential spaces of Sikorski. I had to admit that I
did not know what Sikorski’s differential spaces were. To this Piron replied
something like ‘You should be ashamed of yourself! You are a Pole and you
do not know what are differential spaces of Sikorski!” During the lunch break
1 went to the library to consult Sikorski’s work. In the afternoon session, I told
Piron that the spaces we were dealing with were not the differential spaces of
Sikorski. At that time I did not realize that they were differential schemes.

Around the same time, Richard Cushman was working out his examples
of singular reduction. I was fascinated by his pictures of reduced spaces with
singularities. However, I had not the faintest idea what he was really doing.
Since Richard was spending a lot of time in Calgary working on his book with
Larry Bates, I had a chance to ask him to explain singular reduction to me. It
took me a long time to realize that he was talking the language of differential
spaces without being aware of it. From conversations with Richard, it became
clear that differential spaces provided a convenient language for the description
of the reduction of symmetries for proper actions of symmetry groups.

The next push in the direction of serious investigations of differential spaces
came from Ryer Sjamaar and Eugene Lerman. In their Annals of Mathemat-
ics paper on reduction of symmetries of Hamiltonian systems, they proved a
theorem using techniques that are natural to the theory of differential spaces.
Studying their proof, I realized that it was very simple and that I could not think
of an equally simple proof that would not utilize their techniques. It convinced
me that the language of differential spaces facilitated obtaining new results,
and I decided to investigate if reduction of symmetries could be completely
formulated and analysed within the category of differential spaces.



viil Preface

The theory of differential spaces is essentially differential geometry not
restricted to smooth manifolds. Roman Sikorski, who is considered the father
of the theory, called his book (in Polish) Wstep do Geometrii Rozniczkowej.
This translates as ‘Introduction to Differential Geometry’. Originally, differ-
ential geometry meant the description, in terms of differentiable functions,
of curves and surfaces in R". Singularities of curves or surfaces under con-
sideration could also be described in terms of smooth functions. Differential
geometry evolved in two different directions: the theory of manifolds and
singularity theory. Manifolds are smooth spaces not presented as subsets of
R”. Singularity theory is the study of the failure of the manifold structure.
Differential geometry in the sense of Sikorski is a reunification of the two the-
ories. It contains the theory of manifolds and also allows the investigation of
singularities. It is the investigation of geometry in terms of differentiable func-
tions. Differential geometry, understood in this way, is analogous to algebraic
geometry, which is the investigation of geometry in terms of polynomials. The
difference between the two theories is in the choice of the space of functions.

I am grateful to Constantin Piron for drawing my attention to Sikorski’s
book. I greatly appreciate the support and encouragement of Hans Duister-
maat. I would like to thank Larry Bates for his support and for bringing Richard
Cushman to Calgary, and to thank Jordan Watts for his interest in my work.
Above all, I want to thank Richard Cushman for his patience in explaining
to me the foundations of his theory of singular reduction and his subsequent
collaboration, encouragement and criticism. I also want to thank Cathy Bev-
eridge and Leslie McNab for their help in editing the manuscript. Both Cathy
and Leslie have worked hard to make sure that this book is written in proper
English. However, I am sure that, in spite of their vigilance, I will have man-
aged to slip in some phrases that go against the proper use of English. Last but
not least, I want to thank my wife, Pamela Plummer, without whose support
this book would not have been possible.

Partial support from the National Science and Engineering Research Council
of Canada is gratefully acknowledged.
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Introduction

This book is written for researchers and graduate students in the field of geo-
metric mechanics, especially the theory of systems with symmetries. A wider
audience might include differential geometers, algebraic geometers and singu-
larity theorists. The aim of the book is to show that differential geometry in
the sense of Sikorski is a powerful tool for the study of the geometry of spaces
with singularities. We show that this understanding of differential geometry
gives a complete description of the stratification structure of the space of
orbits of a proper action of a connected Lie group G on a manifold P. We
also show that the same approach can handle intersection singularities; see
Section 8.2.

We assume here that the reader has a working knowledge of differential
geometry and the topology of manifolds, and we use theorems in these fields
freely without giving proofs or references. On the other hand, the material
on differential spaces is developed from scratch. The results on differential
spaces are proved in detail. This should make the book accessible to graduate
students.

The book is split into two parts. In Part I, we introduce the reader to the dif-
ferential geometry of singular spaces and prove some results, which are used
in Part II to investigate concrete systems. The technique of differential geom-
etry presented here is fairly straightforward, and the reader might get a false
impression that the scope of the theory does not differ much from that of the
geometry of manifolds. However, the examples given in Part I will serve as
warnings that such an impression is false. Part II is devoted to applications of
the general theory. Each chapter in this part may be considered as an extensive
example of the use of differential geometry to deal with singularities in con-
crete problems. Since these problems occur in various theories, each chapter
begins with a section introducing elements of the underlying theory, in order
to show the reader the relevance of the problem under consideration.



2 Introduction

The book contains no exercises, because the actual techniques involved are
very simple. In addition to the standard techniques of the differential geometry
of manifolds, we use techniques of algebraic geometry for rings of smooth
functions. The fact that algebraically defined derivations of smooth functions
admit integral curves is the main difference between differential and algebraic
geometry.

The technical details of the presentation are based on the TgX style file
chosen for the preparation of this book. Displayed results are labelled by the
number of the chapter, the number of the section in the chapter and the num-
ber of the result within the section. For example, ‘Lemma 2.1.3” stands for
Lemma 1.3 in Chapter 2; it can also be read as the third lemma in Section 2.1.
Displayed equations are referenced by the number of the chapter and the num-
ber of the equation within the chapter. For example, ‘equation (3.21)” stands
for equation 21 in Chapter 3.

This book is based on several years of research. Some of the results pre-
sented here were obtained by the author. Some other results have been taken
directly from the work of other researchers. The remainder corresponds to an
adaptation and reformulation of the work of other authors so that it fits into the
theory presented here. In order to keep the flow of the presentation in the sub-
sequent chapters free from obstructions, we give below a detailed description
of the content of the book and the references to the literature.

Part I is devoted to a comprehensive presentation of the current status of the
differential geometry of singular spaces. A comprehensive bibliography of the
literature on differential spaces during the period 1965-1992 was published
in 1993 by Buchner, Heller, Multarzyniski and Sasin (Buchner et al., 1993).
According to these authors, the first paper on differential spaces was Sikorski
(1967). In the same year, at a meeting of the American Mathematical Society,
Aronszajn presented an extensive programme of differential-geometric study
of subcartesian spaces in terms of singular charts. Aronszajn’s subcartesian
spaces included arbitrary subspaces of R” (see Aronszajn, 1967). In 1973, Wal-
czak showed that subcartesian spaces are special cases of differential spaces
(see Walczak, 1973).

In Section 2.1, we describe the basic definitions and constructions of Siko-
rski’s theory following his book (see Sikorski, 1972). The fundamental notion
of this theory is the differential structure C°°(S) of a space S, consisting of
functions on S deemed to be smooth. The differential structure of a space
carries all information about the geometry of the space. In particular, a map
¢ : § — T is smooth if it pulls back smooth functions to smooth functions.
A diffeomorphism is an invertible smooth map with a smooth inverse. As in
topology, subsets, products and quotients of differential spaces are differential
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spaces. However, the quotient differential space need not have the quotient
topology. Proposition 2.1.11, which gives conditions for equivalence of the
quotient differential-space topology and the quotient topology, is taken from
the work of Pasternak-Winiarski (1984) .

A differential space S is subcartesian if every point of S has a neighbour-
hood diffeomorphic to a subset of some Cartesian space R". The category
of subcartesian differential spaces is the main object of our study. Mani-
folds are subcartesian spaces that are locally diffeomorphic to open subsets
of R". If M is a manifold, the collection of all local diffeomorphisms to
open subsets of R” forms the maximal atlas on M. Differential geome-
try, understood as the study of the geometry of a space in terms of the
ring of smooth functions on that space, naturally extends from manifolds
to subcartesian spaces. We do not go beyond subcartesian spaces, because
a differential space which is not subcartesian need not have a locally finite
dimension.

In Section 2.2, we show that subcartesian spaces admit partitions of unity.
The importance of partitions of unity stems from the fact that they enable
us to globalize collections of local data. The existence of partitions of unity
on locally compact and paracompact differential spaces was first proved by
Cegietka (1974). Here, we follow the proof of Marshall (1975a).

In Chapter 3, we discuss vector fields on subcartesian spaces. A vector field
on a manifold M can be described either as a derivation of a ring C*°(M) of
smooth functions on M or as a generator of a local one-parameter group of
local diffeomorphisms of M. These two notions are equivalent if M is a man-
ifold. However, they may be inequivalent on a subcartesian space S that is not
a manifold.

In Section 3.1, we study the basic properties of derivations of the differential
structure C*(S) of a subcartesian space S. We show that every derivation X of
C®°(S) can be locally extended to a derivation of C*°(R"). This result allows
the study of ordinary differential equations on subcartesian spaces, which we
discuss in Section 3.2. The existence and uniqueness theorem for integral
curves of derivations on a subcartesian space was first proved by Sniatycki
(2003a).

In Section 3.3, we discuss the tangent bundle space TS of S, defined as
the space of derivations of C°°(S) at points of S. In the literature, TS is also
called the tangent pseudobundle or the Zariski tangent bundle. Following Watts
(2006), we define the regular component Seg of S as the set of all points p of
§ at which dim 7}, S is locally constant, and prove that Sreg is open and dense
in S and that the restriction 7 Sreg of T'S to Speg is locally spanned by global
derivations; see Lusala ef al. (2010). Example 3.3.12, taken from Epstein and
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Sniatycki (2006), shows that a differential space that is regular everywhere
need not be a manifold.

In Section 3.4, we study global derivations of S that generate local one-
parameter groups of local diffeomorphisms. We call such global derivations
vector fields. We show that the orbits of any family of vector fields on a
subcartesian space S are smooth manifolds immersed in S. This result, first
proved by Sniatycki (2003b), is a generalization of some theorems of Suss-
mann (1973) and Stefan (1974). In particular, it implies that orbits of the family
X(S) of all vector fields on S give a partition of S by smooth manifolds. There-
fore, every subcartesian space S has a minimal partition by smooth manifolds.
This result gives us an alternative interpretation of the strata of a minimal
stratification of a subcartesian space, which we study in Chapter 4.

In Chapter 4, we discuss stratified spaces, first investigated by Whitney
(1955), who called them ‘manifold collections’. The term ‘stratification’ is
due to Thom (1955-56). A stratified space is usually described as a topologi-
cal space partitioned in a special way by smooth manifolds. Here, we restrict
our considerations to stratified spaces that are also subcartesian differential
spaces.

In Section 4.1, we discuss stratified subcartesian spaces following the work
of Sniatycki (2003b) and Lusala and Sniatycki (2011). A stratified space is,
by definition, partitioned by smooth manifolds. The results of Chapter 3 show
that a subcartesian space is also partitioned by smooth manifolds, which are
orbits of the family of all vector fields. We show that if a stratified space S is
subcartesian and the stratification of § is locally trivial, then the partition of S
by orbits of the family of all vector fields is also a stratification of S. Moreover,
this second stratification of S is coarser than the original stratification. If the
original stratification is minimal, then it is the same as the stratification given
by the orbits of the family of all vector fields. In other words, a minimal locally
trivial stratification of a subcartesian space is completely determined by its
differential structure.

In Section 4.2, we describe the orbit type stratification 9t of a manifold P
given by a proper action on P of a connected Lie group G. This stratifica-
tion is not minimal, because the union of all the strata is the manifold P. The
presentation adopted here borrows from the presentations of the same topic in
the books by Cushman and Bates (1997), Duistermaat and Kolk (2000), and
Pflaum (2001).

Section 4.3 is devoted to a discussion of the structure of the orbit space
R = P/G. We show that the projection to the orbit space R of the strata of
is a locally trivial and minimal stratification of R. This is called the orbit type
stratification of the orbit space R. We also show that R is a subcartesian space.



