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Preface

The principal type of question asked in mathematics is, “Is state-
ment S true?”’ where the statement 8 is of the form “Every member
of the class A is a member of the class B: A &< B.” To demonstrate
that such a statement is frue means to formulate a proof of the inclu-
sion A < B. To demonstrate that such a statement is false means to
find a member of A that is not a member of B, in other words a coun~
terexample. To illustrate, if the statement S is “Every continuous
function is somewhere differentiable,” then the sets A and B consist
of all continuous functions and all functions that are somewhere dif-
ferentiable, respectively; Weierstrass’s celebrated example of a func-
tion f that is continuous but nowhere differentiable (cf. Example 8,
Chapter 3) is a counterexample to the inclusion 4 < B, since fis a
member of A that is not a member of B. At the risk of oversimplifica-
tion, we might say that (aside from definitions, statements, and hard
work) mathematics consists of two classes—proofs and counter-
examples, and that mathematical discovery is directed toward two
major goals—the formulation of proofs and the construction of coun-
terexamples. Most mathematical books concentrate on the first class,
the body of proofs of true statements. In the present volume we ad-
dress ourselves to the second class of mathematical objects, the coun-
terexamples for false statements.

Generally speaking, examples in mathematics are of two types, il-
lustrative examples and counterexamples, that is, examples to show
why something makes sense and examples to show why something
does not make sense. It might be claimed that any example is a coun-
terexample to something, namely, the statement that such an example
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is impossible. We do not wish to grant such universal interpretation to
the term counterexample, but we do suggest that its meaning be suffi-
ciently broad to include any example whose role is not that of il-
lustrating a true theorem. For instance, a polynomial as an example
of a continuous function is not a counterexample, but a polynomial as
an example of a function that fails to be bounded or of a function that
fails to be periodic s a counterexample. Similarly, the class of all
monotonic functions on 2 bounded closed interval as a class of in-
tegrable functions is nof a counterexample, but this same class as an
example of a function space that is not a vector space ¢s a counter-
example.

The audience for whom this book is intended is broad and varied.
Much of the material is suitable for students who have not yet com-
pleted a first course in calculus, and for teachers who may wish to
make use of examples to show to what extent things may “go wrong’’
in calculus. More advanced students of analysis will discover nuances
that are usually by-passed in standard courses. Graduate students
preparing for their degree examinations will be able to add to their
store of important examples delimiting the range of the theorems they
have learned. We hope that even mature experts will find some of the
reading new and worthwhile.

The counterexamples presented herein are limited almost entirely
to the part of analysis known as “real variables,” starting at the level
of calculus, although a few examples from metric and topological
spaces, and some using complex numbers, are included. We make no
claim to completeness. Indeed, it is likely that many readers will find
some of their favorite examples missing from this collection, which
we confess is made up of our favorites. Some omissions are deliberate,
either because of space or because of favoritism. Other omissions will
undoubtedly be deeply regretted when they are called to our atten-
tion.

This book is meant primarily for browsing, although it should be a
useful supplement to several types of standard courses. If a reader
finds parts hard going, he should skip around and pick up something
new and stimulating elsewhere in the book. An attempt has been
made to grade the contents according to difficulty or sophistication
within the following general categories: (i) the chapters, (ii) the topics
within chapters, and (iii) the examples within topics. Some knowledge
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of related material is assumed on the part of the reader, and therefore
only a minimum of exposition is provided. Each chapter is begun
with an introduction that fixes notation, terminology, and definitions,
and gives statements of some of the more important relevant theo-
rems. A substantial bibliography is included in the back of the book,
and frequent reference is made to the articles and books listed there.
These references are designed both to guide the reader in finding
further information on various subjects, and to give proper credits
and source citations. If due recognition for the authorship of any
counterexample is lacking, we extend our apology. Any such omission
is unintentional.

Finally, we hope that the readers of this book will find both enjoy-
ment and stimulation from this collection, as we have. It has been our
experience that a mathematical question resolved by a counterex.
ample has the pungency of good drama. Many of the most elegant
and artistic contributions to mathematics belong to this genre.

B.R.G.

Irvine, California

J.M.H.O.
Carbondale, Illinois
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