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Preface

For better or worse, mathematics has become the language of modern analytical
economics. It quantifies the relationships between economic variables and among
economic actors. It formalizes and clarifies properties of these relationships. In
the process, it allows economists to identify and analyze those general properties
that are critical to the behavior of economic systems.

Elementary economics courses use reasonably simple mathematical tech-
niques to describe and analyze the models they present: high school algebra
and geometry, graphs of functions of one variable, and sometimes one-variable
calculus. They focus on models with one or two goods in a world of perfect com-
petition, complete information, and no uncertainty. Courses beyond introductory
micro- and macroeconomics drop these strong simplifying assumptions. However,
the mathematical demands of these more sophisticated models scale up consider-
ably. The goal of this text is to give students of economics and other social sciences
a deeper understanding and working knowledge of the mathematics they need to
work with these more sophisticated, more realistic, and more interesting models.

WHY THIS BOOK?

We wrote this book because we felt that the available texts on mathematics for
economists left unfilled some of the basic needs of teachers and students in this
area. In particular, we tried to make the following improvements over other texts.

1. Many texts in this area focus on mathematical techniques at the expense of
mathematical ideas and intuition, often presenting a “cookbook approach.” Our
book develops the student’s intuition for how and why the various mathematical
techniques work. It contains many more illustrations and figures than competing
texts in order to build the reader’s geometric intuition. It emphasizes the primary
role of calculus in approximating a nonlinear function by a linear function or
polynomial in order to build a simple picture of the behavior of the nonlinear
function — a principle rich in geometric content.

2. Students learn how to use and apply mathematics by working with concrete
examples and exercises. We illustrate every new concept and technique with
worked-out examples. We include exercises at the end of every section to give
students the necessary experience working with the mathematics presented.

3. This is a book on using mathematics to understand the structure of eco-
nomics. We believe that this book contains more economics than any other
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XXii  PREFACE

math-for-economists text. Each chapter begins with a discussion of the economic
motivation for the mathematical concepts presented. On the other hand, this is
a book on mathematics for economists, not a text of mathematical economics.
We do not feel that it is productive to learn advanced mathematics and advanced
economics at the same time. Therefore, we have focused on presenting an intro-
duction to the mathematics that students need in order to work with more advanced
economic models.

4. Economics is a dynamic field; economic theorists are regularly introducing
or using new mathematical ideas and techniques to shed light on economic theory
and econometric analysis. As active researchers in economics, we have tried to
make many of these new approaches available to students. In this book we present
rather complete discussions of topics at the frontier of economic research, topics
like quasiconcave functions, concave programing, indirect utility and expendi-
ture functions, envelope theorems, the duality between cost and production, and
nonlinear dynamics.

5.Itis important that students of economics understand what constitutes a solid
proof — a skill that is learned, not innate. Unlike most other texts in the field, we
try to present careful proofs of nearly all the mathematical results presented — so
that the reader can understand better both the logic behind the math techniques
used and the total structure in which each result builds upon previous results. In
many of the exercises, students are asked to work out their own proofs, often by
adapting proofs presented in the text.

An important motivation for understanding what constitutes a careful proof
is the need for students to develop the ability to read an argument and to decide
for themselves whether or not the conclusions really do follow from the stated
hypotheses. Furthermore, a good proof tells a story; it can be especially valuable
by laying bare the underlying structure of a model in such a way that one clearly
sees which of the model’s component parts are responsible for producing the
behavior asserted in the statement of the economic principle. Some readers of this
text will go on to draw conclusions from economic models in their own research.
‘We hope that the experience of working with proofs in this text will be a valuable
guide to developing one’s own ability to read and write proofs.

WHAT’S IN THIS BOOK?

At the core of modern microeconomics is the hypothesis that economic agents
consciously choose their most preferred behavior according to the alternatives
available to them. The area of mathematics most relevant to such a study is
the maximization or minimization of a function of several variables in which
the variables are constrained by equalities and inequalities. This mathematical
problem in all the necessary generality, sometimes called the Lagrange multiplier
problem, is a focal point of this book. (See especially Chapters 16 to 19.) The
chapters of this book are arranged so that this material can be reached quickly and
efficiently.
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This text begins with overviews of one-variable calculus (Chapters 2 to 4) and
of exponentials and logarithms (Chapter 5). One can either cover this material
during the first weeks of the class or, more commonly we believe, can ask students
to read it on their own as a review of the calculus they have taken. The examples
and exercises in these earliest chapters should make either process relatively
simple.

The analysis of solutions to optimization problems usually involves studying
the solutions to the systems of equations given by the first-order conditions. The
first half of this book focuses on the study of such systems of equations. We first
develop a rather complete theory of the solutions of linear systems, focusing on
such questions as: Does a solution exist? How many are there? What happens
to the solution as the equations change a little? (Chapters 6 to 10.) We then
turn to the study of the more realistic and more complex nonlinear systems
(Chapters 11 to 15). We apply the metaprinciple of calculus to this study of
nonlinear systems: the best way to study the behavior of the solutions of a nonlinear
system is to examine the behavior of a closely related /inear system of equations.
Finally, we pull all this material together in Chapters 16 to 19 in our discussion
of optimization problems — unconstrained and constrained — that is the heart of
this text.

Chapters 20 through 25 treat two other basic mathematical issues that arise
in the study of economic models. Chapters 20 and 21 give an in-depth presenta-
tion of properties of economic relationships, such as homogeneity, concavity, and
quasiconcavity, while Chapter 22 illustrates how these properties arise naturally
in economic models. Furthermore, there are often natural dynamics in economic
processes: prices adjust, economies grow, policies adapt, economic agents max-
imize over time. Chapters 23, 24, and 25 introduce the mathematics of dynamic
systems, focusing on the eigenvalues of a matrix, linear difference equations, and
linear and nonlinear differential equations.

This book is laid out so that one can get to the fundamental results and
consequences of constrained optimization problems as quickly as possible. In
some cases, for example, in the study of determinants, limits of sequences, and
compact sets, there are important topics that are slightly off the beaten path to the
study of constrained optimization problems. To keep the presentation as flexible as
possible, we have placed the description of these topics in the last five chapters of
this book. Chapter 26 presents details about the properties of determinants outlined
in Chapter 9. Chapter 27 completes the application of matrix algebra in Chapters
7 and 8 to the determination of the size of the set of solutions of a linear system,
ending with a discussion of the Fundamental Theorem of Matrix Algebra. Chapter
28 presents economic applications of the Fundamental Theorem. Chapter 29 does
some fine-tuning on the study of sets and sequences introduced in Chapter 12.
Chapter 30 collects some of the more complex proofs of the multivariable analysis
presented in Chapters 13, 14, and 15. In classroom presentations the material in
any of these last five chapters can be presented: 1) right after the corresponding
material in the earlier chapter, 2) at the end of the course, or 3) not at all, depending
on the amount of time available or the needs of the students.
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COORDINATION WITH OTHER COURSES

Often the material in this course is taught concurrently with courses in advanced
micro- and macroeconomics. Students are sometimes frustrated with this arrange-
ment because the micro and macro courses usually start working with constrained
optimization or dynamics long before these topics can be covered in an orderly
mathematical presentation.

We suggest a number of strategies to minimize this frustration. First, we have
tried to present the material so that a student can read each introductory chapter
in isolation and get a reasonably clear idea of how to work with the material of
that chapter, even without a careful reading of earlier chapters. We have done
this by including a number of worked exercises with descriptive figures in every
introductory chapter.

Often during the first two weeks of our first course on this material, we present
a series of short modules that introduces the language and formulation of the more
advanced topics so that students can easily read selected parts of later chapters on
their own, or at least work out some problems from these chapters.

Finally, we usually ask students who will be taking our course to be famil-
iar with the chapters on one-variable calculus and simple matrix theory before
classes begin. We have found that nearly every student has taken a calculus course
and nearly two-thirds have had some matrix algebra. So this summer reading
requirement — sometimes supplemented by a review session just before classes
begin — is helpful in making the mathematical backgrounds of the students in the
course more homogeneous.
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