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Preface

Robust subspace learning and tracking by decomposition into low-rank and sparse matrices
provide a suitable framework for computer vision applications. Thus, decomposition into
low-rank and sparse matrices has been developed in different formulation problems such as
robust principal component analysis, robust non-negative matrix factorization, robust ma-
trix completion, subspace tracking, and low-rank minimization. These different approaches
differ from the decomposition, the corresponding optimization problem, and the solvers.
The optimization problem can be NP-hard in its original formulation, and it can be convex
or not follow the constraints and the loss functions used. Thus, the key challenges concern
the design of efficient relaxed models and solvers, which have to have as few iterations as
possible, and be as efficient as possible.

As the advances in these different problem formulations are fundamental for computer
vision applications, this field has witnessed a number of significant publications since the
papers of Cands et al., and Chandrasekharan et al. in 2009. A representative example con-
cerns the background/foreground separation in video surveillance. Up to now, many efforts
have been made to develop methods that perform well visually with reduced computational
cost. However, no algorithm has emerged that is able to simultaneously address all of the key
challenges that accompany real-world videos. Thus, effective decompositions for robustness
to deal with both real-life scenes with fixed cameras and mobile devices have recently been
developed. Another feature of computer vision applications is that the decomposition has
to be computed in real-time and low memory requirements. Algorithms have to be designed
to meet these requirements.

In this context, this handbook solicited contributions to address this wide range of robust
low-rank and sparse matrix decompositions for applications in image and video processing.
Thus, it groups the works of the leading teams in this field over recent years. By incorporat-
ing both existing and new ideas, this handbook gives a complete overview of the concepts,
theories, algorithms, and applications related to robust low-rank and sparse matrix decom-
positions. First, an introduction to robust principal component analysis via low-rank and
sparse matrices decomposition for beginners is provided by surveying the different decom-
positions, loss functions, optimization problems, and solvers. Furthermore, leading methods
and algorithms for robust low-rank and sparse matrix decompositions are presented. More-
over, an accompanying website! is provided. This website contains the list of chapters, their
abstracts, and links to some software demonstrations. It allows the reader to have quick
access to the main resources and codes in the field. Finally, with this handbook, we aim to
bring a one-stop solution, i.e., access to a number of different decompositions, algorithms,
implementations, and benchmarking techniques in a single volume.

The handbook consists of five parts. Part I presents an overall introduction to ro-
bust PCA via decomposition into low-rank and sparse matrices. Chapter 1 provides a first
complete survey of the decomposition into low-rank and sparse matrices. Furthermore, the

1https ://sites.google.com/site/lowranksparsedecomposition/
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authors provide an accompanying website: the DLAM Website.2 This website contains a full
list of the references in the field, links to available datasets and codes. In each case, the list
is regularly updated and classified according to the sections of this chapter. Chapter 2 gives
a detailed review of algorithms for stable PCA. Chapter 3 investigates dual smoothing and
value function techniques for variational matrix decomposition. Thus, the authors review
some recent techniques in convex optimization and contribute several novel results. A dis-
tinguishing feature of Chapter 3 is the emphasis on a range of optimization formulations of
the RPCA problem. When a few columns of the data matrix are generated by mechanisms
different from the rest of the columns, the existence of these outlying columns tends to
destroy the low-rank structure of the data matrix. Thus, Chapter 4 presents a low-rank and
block-sparse matrix decomposition insensitive to column/row outliers. Chapter 5 focuses on
the control of the sparsity in robust PCA.

Part II concerns robust matrix factorization/completion problems. Chapter 6 unifies
nuclear norm and bilinear factorization for low-rank matrix decomposition. The authors
present very convincing results in the several applications, such as background/foreground
separation, structure from motion, face reconstruction, and motion estimation between pho-
tometric stereo sequences. Chapter 7 describes a robust non-negative matrix factorization
under separability assumption. The algorithm called RobustXray is used for background/-
foreground separation when illumination changes occur. Chapter 8 provides nonconvex ap-
proaches and efficient algorithms for robust matrix completion. The authors provide several
results for image/video recovery and removing shadows from faces. Chapter 9 develops a
factorized robust matrix completion. Results on video background subtraction show that
this approach is robust against several challenges such as illumination changes and dynamic
backgrounds.

Part III focuses on robust online subspace estimation, learning, and tracking. Chapter
10 develops online robust algorithms for robust PCA. Thus, the authors study the problem
of sequentially recovering a sparse vector and a vector from a low-dimensional subspace
from knowledge of their sum. Two main approaches are then presented: Recursive Pro-
jected Compressed Sensing (ReProCS) and Modified-PCP. A full evaluation is provided
for background/foreground separation against state-of-the-art RPCA algorithms. Chap-
ter 11 provides incremental methods for robust local subspace estimation. Furthermore,
the authors generalize their model from a single low-rank subspace with a sparse set of
possibly-large deviations, to a low-dimensional manifold with the same type of deviations.
Thus, local subspace models and endogenous sparse representations are proposed to obtain
a robust approximation of the backgrounds component of a video sequence captured by a
non-stationary camera. Finally, a transform invariant incremental RPCA algorithm is de-
scribed. Chapter 12 presents a Robust Orthonormal Subspace Learning called ROSL for
efficient low-rank recovery. Different from convex methods using the nuclear norm, ROSL
utilizes a novel rank measure on the low-rank matrix that imposes the group sparsity of its
coefficients under orthonormal subspace. The authors present several applications such as in
background/foreground separation and removing shadows from faces. Chapter 13 presents a
unified view of nonconvex heuristic approaches. Then, the authors propose two non-convex
models, i.e., [,-norm heuristic recovery (pHR) and log-sum heuristic recovery (LHR) for
corrupted matrix learning. Experimental results on noisy depth maps fusion for muti-view
stereo show the robustness of these two non-convex models.

thtps ://sites.google.com/site/robustdlam/home
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Part IV concerns applications in image and video processing. Chapter 14 developed
a variational approach. The authors evaluated their method on foreground detection in
blurred and noisy video, and detection of network anomalies. Chapter 15 recovered low-
rank and sparse matrices in the presence of missing and grossly corrupted observations.
The authors present results on text removal, background/foreground separation, and face
reconstruction. Collaborative filtering and subspace clustering are also investigated. Chap-
ter 16 briefly presents the application of low-rank and sparse matrix decompositions in
hyperspectral video processing. Chapter 17 investigates an accelerated dynamic MRI using
low-rank plus sparse reconstruction with separation of background and dynamic compo-
nents.

Part V presents resources and applications in background/foreground separation for
video surveillance. Chapter 18 describes the LRSLibrary, which provides a collection of
low-rank and sparse decomposition algorithms in MATLAB®. The library was designed
for background/foreground separation in videos, but it can also be used or adapted for other
computer vision. Currently the LRSLibrary contains a total of 72 matrix-based and tensor-
based algorithms. The LRSLibrary was tested successfully in MATLAB R2013b in both the
x86 and x64 versions. Chapter 19 develops a Dynamic Mode Decomposition (DMD) for Ro-
bust PCA. The DMD decomposition yields oscillatory time components of the video frames
that have contextual implications. Furthermore, the authors present a multi-resolution DMD
(MRDMD) that allows them to separate components that are happening on different time
scales. Chapter 20 provides three algorithms for stochastic RPCA applied to background/-
foreground separation. First, Markov Random Fields (MRF') are used to take into account
the spatial constraints of the foreground objects. Then, multiple features and dynamic fea-
ture selection are added to improve the detection in the case of highly dynamic backgrounds.
Finally, the authors present a depth-extended version which is robust in the presence of
camouflage in color. Chapter 21 presents a Bayesian sparse estimation applied to back-
ground/foreground separation.

The handbook is intended to be a reference for researchers and developers in industries,
as well as graduate students, who are interested in low-rank and sparse matrix decomposi-
tion applied to computer vision. Particularly, the application in image and video processing
are presented, such as in image analysis, image denoising, motion saliency detection, video
coding, key frame extraction, hyperspectral video processing and background/foreground
separation. Thus, it can be suggested as a reading text for teaching graduate courses in
subjects such as computer vision, image and video processing, real-time architecture, ma-
chine learning, and data mining. The editors of this handbook would like to acknowledge,
with their sincere gratitude, the contributors, for their valuable chapters, and the review-
ers, for the helpful comments concerning the chapters in this handbook. Particularly, we
acknowledge Dr. Yuangiang (Evan) Dong 3 from UtopiaCompression Corporation 4 for his
review of the handbook. We also acknowledge the reviewers of the original handbook pro-
posal for their hepful suggestions. Furthermore, we are very grateful for the help that we
have received from Randi Cohen, Hayley Ruggieri, and others at CRC Press during the
preparation of this handbook. Finally, we would like to acknowledge Shashi Kumar from
Cenveo for his valuable support about the LaTeX issues.

3http ://vigir.missouri.edu/~evan/index.htm
http://www.utopiacompression.com/
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