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Preface to Second Edition

For this new edition, each chapter was revised and improved, typos corrected
and figures added, some in response to many helpful comments on the first
edition. We especially thank Professor Milton W. Cole for his correction of
a factor 2 in the specific heat of a 1D hard-core Bose gas. Additionally, solu-
tions to some representative problems have been included in an Appendix.

But, more than mere revision and expansion of the material, it is the wit
and knowledge of a new co-author that has greatly improved the present
text. Thanks to this collaboration the topics of renormalization group and
Monte-Carlo numerical techniques could be treated on a par with more con-
ventional elements of statistical thermodynamics. The addition of these im-
portant subjects and the expansion of topics that previously had been just
touched upon, allows a coherent picture of thermal physics to emerge that
incorporates aspects of many-body theory and phase transitions. We present
this new edition in the hope it will better serve the contemporary student
while offering to the instructor a wider, more useful choice of lecture mate-
rials.

D.C.M,, Salt Lake City and R.H.S., Pittsburgh

August 2007



Preface to First Edition

1 dedicate this book to those generations of students who suffered
through endless revisions of my class notes in statistical mechanics and,
through their class participation, homework and projects, helped shape the
material.

My own undergraduate experience in thermodynamics and statistical me-
chanics, a half-century ago at MIT, consisted of a single semester of Sears’
Thermodynamics (skilifully taught by the man himself). But it was a subject
that seemed as distant from “real” physics as did poetry or French literature.
Graduate study at the University of Illinois in Urbana-Champaign was not
that different, except that the course in statistical mechanics was taught by
the brilliant lecturer Francis Low the year before he departed for... MIT.
I asked my classmate J.R. Schrieffer, who presciently had enrolled in that
class, whether I should chance it later with a different instructor. He said
not to bother — that he could explain all I needed to know about this topic
over lunch.

On a paper napkin, Bob wrote “e #H.” “That’s it in a nutshell!” “Surely
you must-be kidding, Mr Schrieffer,” I replied (or words to that effect). “How
could you get the Fermi-Dirac distribution out of THAT? “Easy as pie,” was
the reply®... and I was hooked.

I never did take the course, but in those long gone days it was still pos-
sible to earn a Ph.D. without much of a formal education. Schrieffer, of
course, with John Bardeen and Leon Cooper, went on to solve the statistical
mechanics of superconductors and thereby earn the Nobel prize.

The standard book on statistical physics in the late 1950’s was by T. L.
Hill. It was recondite but formal and dry. In speaking of a different text that
was feebly attempting the same topic, a wit quipped that “it was not worth

2See Chapter 6.

xiii
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a bean of Hill's.” Today there are dozens of texts on the subject. Why add
one more?

In the early 1960’s, while researching the theory of magnetism, I de-
termined to understand the two-dimensional Ising model that had been so
brilliantly resolved by Lars Onsager, to the total and utter incomprehension
of just about everyone else. Ultimately, with the help of Elliot Lieb and Ted
Schultz (then my colleagues at IBM’s research laboratory,) I managed to
do so and we published a reasonably intelligible explanation in Reviews of
Modern Physics. This longish work — parts of which appeared in Chapter 8
— received an honorable mention almost 20 years later, in the 1982 Nobel
lecture by Kenneth G. Wilson, who wrote:

“In the summer of 1966 I spent a long time at Aspen. While there I
carried out a promise I had made to myself while a graduate student, namely
[to work] through Onsager’s solution of the two-dimensional Ising model. I
read it in translation, studying the field-theoretic form given in Lieb, Mattis
and Schultz [’s paper.] When I entered graduate school I had carried out
the instructions given to me by my father and had knocked on both Murray
Gell-Mann’s and [Richard] Feynman'’s doors and asked them what they were
currently doing. Murray wrote down the partition function of the three-
dimensional Ising model and said it would be nice if I could solve it....
Feynman’s answer was “nothing.” Later, Jon Mathews explained some of
Feynman’s tricks for reproducing the solution for the two-dimensional Ising
model. I didn’t follow what Jon was saying, but that was when I made my
promise. ... As I worked through the paper of Mattis, Lieb and Schultz I
realized there should be applications of my renormalization group ideas to
critical phenomena. ..”P

Recently, G. Emch has reminded me that at the very moment Wilson was
studying our version of the two-dimensional Ising model I was attending a
large TUPAP meeting in Copenhagen on the foundations and ‘applications of
statistical mechanics. My talk had been advertised as, “The exact solution
of the Ising model in three dimensions” and, needless to say, it was well
attended. I did preface it by admitting there was no exact solution but that
— had the airplane taking me to Denmark crashed — the title alone would
have earned me a legacy worthy of Fermat. Although it was anticlimactic, the
actual talk® demonstrated that in 5 spatial dimensions or higher, mean-field
theory prevails.

®From Nobel Lectures in Physics (1981-1990), published by World Scientific.
°It appeared in the Proceedings with a more modest title befitting a respectable albeit
approximate analysis.



Preface XV

In the present book I have set down numerous other topics and tech-
niques, much received wisdom and a few original ideas to add to the “hill
of beans.” Whether old or new, all of it can be turned to advantage. My
greatest satisfaction will be that you read it here first.

SECOND REVISED AND CORRECTED PRINTING

I have corrected typographical errors, improved a number of discussions
{(notably on negative-entropy aspects of the classical gas), and added
Problem 1.7 to further curb any lingering enthusiasm for gambling.

D.C.M.
Salt Lake City
May 2004



Introduction: Theories of Thermodynamics,
Kinetic Theory and Statistical Mechanics

Despite the lack of a reliable atomic theory of matter, the science of
Thermodynamics flourished in the 19th century. Among the famous thinkers
it attracted, one notes William Thomson (Lord Kelvin) after whom the
temperature scale is named, and James Clerk Maxwell. The latter’s many
contributions include the “distribution function” and some very useful
differential “relations” among thermodynamic quantities (as distinguished
from his even more famous “equations” in electrodynamics). The Maxwell
relations set the stage for our present view of thermodynamics as a science
based on function theory while grounded in experimental observations.

The kinetic theory of gases came to be the next conceptual step. Among
pioneers in this discipline one counts several unrecognized geniuses, such as
J. J. Waterston who — thanks to Lord Rayleigh — received posthumous
honors from the very same Royal Society that had steadfastly refused to
publish his works during his lifetime. Ludwig Boltzmann committed suicide
on September 5, 1906, depressed — it is said — by the utter rejection of his_
atomistic theory by such colleagues as Mach and Ostwald. Paul Ehrenfest,
another great innovator, died by his own hand in 1933. Among 20th century
scientists in this field, a sizable number have met equally untimely ends. So
“now”, (here we quote from a well-known and popular text?) “it is our turn
to study statistical mechanics”. '

The postulational science of Statistical Mechanics — originally
introduced to justify and extend the conclusions of thermodynamics but
nowadays extensively studied and used on its own merits — is entirely a
product of the 20th century. Its founding fathers include Albert Einstein
(who, among his many other contributions, made sense out of Planck’s Law)
and J. W. Gibbs, whose formulations of phase space and entropy basically

2D. H. Goodstein, States of Matter, Dover, New York, 1985.
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anticipated quantum mechanics. Many of the pioneers of quantum theory
also contributed to statistical mechanics. We recognize this implicitly when-
ever we specify particles that satisfy “Fermi-Dirac” or “Bose-Einstein”
statistics, or when we solve the “Bloch equation” for the density matrix,
or when evaluating a partition function using a “Feynman path integral”.

In its most simplistic reduction, thermodynamics is the study of
mathematical identities involving partial derivatives of well defined
functions. These relate various macroscopic properties of matter: pressure,
temperature, density, magnetization, etc., to one another. Phase transitions
mark the discontinuities of one or more of these functions and serve to
separate distinct regions (e.g. vapor from solid) in the variables’ phase space.
Kinetic theory seeks to integrate the equations of motion of a many-body
system starting from random initial conditions, thereby to construct the
system’s thermodynamic properties. Finally, statistical mechanics provides
an axiomatic foundation for the preceding while allowing a wide choice of
convenient calculational schemes.

There is no net flow of matter nor of charged particles in thermody-
namic equilibrium. Away from equilibrium but in or near steady state, the
Boltzmann equation (and its quantum generalizations by Kubo and others)
seeks to combine kinetic theory with statistical mechanics. This becomes
necessary in order to explain and predict transport phenomena in a
non-ideal medium, or to understand the evolution to equilibrium when start-
ing from some arbitrary initial conditions. It is one of the topics covered in
the present text.

Any meaningful approach revolves about taking N, the number of distinct
particles under consideration, to the limit N — oo. This is not such a dim
idea in light of the fact that Avogadro’s number, N4 = 6.022045 x 1023 per
mole.P

Taking advantage of the simplifications brought about by the law of large
numbers and of some 18th Century mathematics one derives the underpin-
nings for a science of statistical mechanics and, ultimately, finds a theoretical
justification for some of the dogmas of thermodynamics. In the 11 chapters
to follow we see that a number of approximate relations at small values of N
become exact in the “thermodynamic limit” (as the procedure of taking the
limit N — oo is now known in all branches of physics, including many-body
physics and quantum field theory).

YA mole is the amount of a substance that contains as many elementary entities as there
are carbon atoms in 12 g of Carbon 12. E.g.: 1 mole of electrons (e”) consists of N4
particles of total mass 5.4860 x 10~ g and total charge —96.49 x 10% coulombs.
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Additionally we shall study the fluctuations O(v/N) in macroscopic O(N)
ertensive quantities, for “one person’s noise is another person’s signal”. Even
when fluctuations are small, what matters most is their relation to other
thermodynamic functions. For example, the “noise” in the internal energy,
(E%)—(E)?, is related to the same system’s heat capacity dE /dT. Additional
examples come under the rubric of the “fluctuation-dissipation” theorem.

With  Bose-Einstein  condensation,  “high”-temperature super-
conductivity, “nanophysics”, “quantum dots”, and “colossal” magnetore-
sistance being the order of the day, there is no lack of contemporary ap-
plications for the methods of statistical physics. However, first things first.
We start the exposition by laying out and motivating the fundamentals and
methodologies that have “worked” in such classic systems as magnetism and
the non-ideal gas. Once mastered, these reductions should allow one to pose
more contemporary questions. With the aid of newest techniques — some
of which are borrowed from quantum theory — one can supply some of the
answers and, where the answers are still lacking, the tools with which to
obtain them. The transition from “simple” statistical mechanics to the more
sophisticated versions is undertaken gradually, starting from Chapter 4 to
the concluding chapters of the book. The requisite mathematical tools are
supplied as needed within each self-contained chapter.

The book was based on the needs of physics graduate students but it is
designed to be accessible to engineers, chemists and mathematicians with
minimal backgrounds in physics. Too often physics is taught as an idealized
science, devoid of statistical uncertainties. An elementary course in thermo-
dynamics and statistical physics can remedy this; Chapters 1-4 are especially
suitable for undergraduates aspiring to be theoreticians. Much of the mate-
rial covered in this book is suitable for self-study but all of it can be used
as a classroom text in a one-semester course.

Based in part on lecture notes that the author developed during a decade
of teaching this material, the present volume seeks to cover many essential
physical concepts and theoretical “tricks” as they have evolved over the past
two centuries. Some theories are just mentioned while others are developed
in great depth, the sole criterion being the author’s somewhat arbitrary
opinion of the intellectual depth of the posed problem and of the elegance
of its resolution. Here, function follows form.

Specifically, Chapters 1 and 2 develop the rudiments of a statisti-
cal science, touching upon metastable states, phase transitions, critical
exponents and the like. Applications to magnetism and superconductivity
are included ab initio. Chapter 3 recapitulates thermodynamics in a form
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that invites comparison with the postulational statistical mechanics of
Chapter 4. van der Waals gas is studied and then compared to the exactly
solved Tonks’ gas. Chapters 5 and 6 deal, respectively, with the quantum
statistics of bosons and fermions and their various applications. We distin-
guish the two principal types of bosons: conserved or not. The notion of
“quasiparticles” in fermion systems is stressed. We touch upon semiconduc-
tor physics and the réle of the chemical potential y(T') in n-type semicon-
ductors, analyzing the case when ionized donors are incapable of binding
more than one excess electron due to 2-body forces. Chapter 7 presents the
kinetic theory of dilute gases. Boltzmann’s H-function is used to compute
the approach to thermodynamic equilibrium and his eponymous equation is
transformed into an eigenvalue problem in order to solve for the dispersion
and decay of sound waves in gases.

Chapter 8 develops the concept of the transfer matrix, including an
Onsager-type solution to the two-dimensional Ising model. Exact formulas
are used to calculate the critical exponents of selected second-order phase
transitions. The concept of “frustration” is introduced and the transfer ma-
trix of the “fully frustrated” two-dimensional Ising model is diagonalized
explicitly. A simplified model of fracture, the “zipper”, is introduced and
partly solved; in the process of studying this “classical” system, we learn
something new about the equations of continuity in quantum mechanics!

The subsequent and last chapters highlight some of the most remark-
able achievements of the recent decades: the successful application of the
renormalization group approach of quantum field theory to the study of
second-order phase transitions, and the numerical — essentially experi-
mental — solution of complex models, using a random approach denoted
“Monte-Carlo” and inspired by what is arguably the gambling capital of the
world.

The last chapter concerns advanced techniques: Doi’s field-theoretic ap-
proach to diffusion-limited reactions or processes, Greens function approach
to the many-body problem at finite temperature is anther. As illustrations,
we work out the spectrum of several special models including that of a per-
fectly random Hamiltonian.

Additional models and calculations have been relegated to the numer-
ous problems scattered throughout the text, where you, the reader, can test
your mastery of the material. But despite coverage of a wealth of topics this
book remains incomplete, as any text of normal length and scope must be.
It should be supplemented by the monographs and review articles on critical
phenomena, series expansions, reaction rates, exact methods, granular ma-
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terials, etc., found on the shelves of even the most modest physics libraries.
If used to good advantage, the present book could be a gateway to these
storehouses of knowledge and research.

When this book first appeared in print a number of readers and review-
ers questioned the last word in the title. Be reassured, “simple” does not
mean “simple-minded.” Here is what it does mean: an attempt to explicate
a rather unique science encompassing all of physics at finite T but, unlike
the rest of physics, using explanations that are based not on the laws of pure
motion but on those of pure chance and needing to be anchored in logic
and in common sense. The greatest challenge in creating a textbook in this
subject lies in choosing a few representative topics from among the many.
We included conventional topics (thermodynamics, Bose gas, Fermi-Dirac
statistics, etc.) along with some that were less commonplace: the concept of
negative temperatures, the construction of a transfer matrix, the theory of
sound-wave propagation in fluids, the nature of critical phenomena, the uses
of Green functions, and many more, all the while developing the necessary
mathematical tools as they became needed. Although some of this may be
quite complex we strove to provide only as much detail as seemed necessary
and to use only such theories and algorithms that, while adequate, felt ...
simple.
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