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Preface

These notes developed from a course on the numerical solution of conservation laws
first taught at the University of Washington in the fall of 1988 and then at ETH during
the following spring.

The overall emphasis is on studying the mathematical tools that are essential in de-
veloping, analyzing, and successfully using numerical methods for nonlinear systems of
conservation laws, particularly for problems involving shock waves. A reasonable un-
derstanding of the mathematical structure of these equations and their solutions is first
required, and Part I of these notes deals with this theory. Part II deals more directly with
numerical methods, again with the emphasis on general tools that are of broad use. I
have stressed the underlying ideas used in various classes of methods rather than present-
ing the most sophisticated methods in great detail. My aim was to provide a sufficient
background that students could then approach the current research literature with the
necessary tools and understanding,

Without the wonders of TeX and LaTeX, these notes would never have been put
together. The professional-looking results perhaps obscure the fact that these are indeed
lecture notes. Some sections have been reworked several times by now, but others are
still preliminary. I can only hope that the errors are.not too blatant. Moreover, the
breadth and depth of coverage was limited by the length of these courses, and some
parts are rather sketchy. I do have hopes of eventually expanding these notes into a full-
fledged book, going more deeply into some areas, discussing a wider variety of methods
and techniques, and including discussions of more applications areas. For this reason I
am particularly interested in receiving corrections, comments and suggestions. I can be
reached via electronic mail at na.rleveque@na-net.stanford.edu.

I am indebted to Jiirgen Moser and the Forschungsinstitut at ETH for the opportunity
to visit and spend time developing these notes, and to Martin Gutknecht for initiating this
contact. During the course of this project, I was also supported in part by a Presidential
Young Investigator Award from the National Science Foundation.
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1 Introduction

1.1 Conservation laws

These notes concern the solution of hyperbolic systems of conservation laws. These are
time-dependent systems of partial differential equations (usually nonlinear) with a par-
ticularly simple structure. In one space dimension the equations take the form

0 0
au(x,t) + a—zf(u(:c,t)) =0. (1.1)

Here v : R x R — IR™ is an m-dimensional vector of conserved quantities, or state
variables, such as mass, momentum, and energy in a fluid dynamics problem. More
properly, u; is the density function for the jth state variable, with the interpretation that
J22 uj(z,t) dz is the total quantity of this state variable in the interval [zq, z5] at time ¢.

The fact that these state variables are conserved means that [°3 u;(z,t)dz should
be constant with respect to ¢. The functions u; themselves, representing the spatial
distribution of the state variables at time ¢, will generally change as time evolves. The
main assumption underlying (1.1) is that knowing the value of u(z,t) at a given point
and time allows us to determine the rate of flow, or flux, of each state variable at (z, t).
The flux of the jth component is given by some function f;(u(z,t)). The vector-valued
function f(u) with jth component f;(u) is called the flux function for the system of
conservation laws, so f : R™ — IR™. The derivation of the equation (1.1) from physical
principles will be illustrated in the next chapter.

The equation (1.1) must be augmented by some initial conditions and also possibly
boundary conditions on a bounded spatial domain. The simplest problem is the pure
initial value problem, or Cauchy problem, in which (1.1) holds for —co < z < oo and
t > 0. In this case we must specify initial conditions only,

u(z,0) = uo(z), —00 < & < 00, (1.2)

We assume that the system (1.1) is hyperbolic. This means that the m x m Jacobian
matrix f'(u) of the flux function has the following property: For each value of u the

1



2 1 Introduction

eigenvalues of f'(u) are real, and the matrix is diagonalizable, i.e., there is a complete set
of m linearly independent eigenvectors. The importance of this assumption will be seen
later.

In two space dimensions a system of conservation laws takes the form

Sz, ) + 5 (u(a,,0) + 5o(ule,,0) =0 (1)

where v : R? x R — R™ and there are now two flux functions f,g : R™ — R™. The
generalization to more dimensions should be clear.

Hyperbolicity now requires that any real linear combination af’(u) + B¢'(u) of the
flux Jacobians should be diagonalizable with real eigenvalues.

For brevity throughout these notes, partial derivatives will usually be denoted by
subscripts. Equation (1.3), for example, will be written as

ue+ f(u)s + g(u)y = 0. (1.4)

Typically the flux functions are nonlinear functions of u, leading to nonlinear systems
of partial differential equations (PDEs). In general it is not possible to derive exact
solutions to these equations, and hence the need to devise and study numerical methods
for their approximate solution. Of course the same is true more generally for any nonlinear
PDE, and to some extent the general theory of numerical methods for nonlinear PDEs
applies in particular to systems of conservation laws. However, there are several reasons
for studying this particular class of equations on their own in some depth:

e Many practical problems in science and engineering involve conserved quantities
and lead to PDEs of this class.

o There are special difficulties associated with solving these systems (e.g. shock for-
mation) that are not seen elsewhere and must be dealt with carefully in developing
numerical methods. Methods based on naive finite difference approximations may
work well for smooth solutions but can give disastrous results when discontinuities
are present.

e Although few exact solutions are known, a great deal is known about the-mathemat-
ical structure of these equations and their solution. This theory can be exploited to
develop special methods that overcome some of the numerical difficulties encoun-
tered with a more naive approach.

1.2 Applications

One system of conservation laws of particular importance is the Euler equations of gas
dynamics. More generally, the fundamental equations of fluid dynamics are the Navier-
Stokes equations, but these include the effects of fluid viscosity and the resulting flux



1.2 Applications 3

function depends not only on the state variables but also on their gradients, so the equa-
tions are not of the form (1.1) and are not hyperbolic. A gas, however, is sufficiently
dilute that viscosity can often be ignored. Dropping these terms gives a hyperbolic sys-
tem of conservation laws with m = d + 2 equations in d space dimensions, corresponding
to the conservation of mass, energy, and the momentum in each direction. In one space
dimension, these equations take the form

a|”’ P py
el + E pvi4+p | =0, (1.5)
E v(E + p)

where p = p(z,t) is the density, v is the velocity, pv is the momentum, E is the energy,
and p is the pressure. The pressure p is given by a known function of the other state
variables (the specific functional relation depends on the gas and is called the “equation
of state”). The derivation of these equations is discussed in more detail in Chapters 2
and 5.

These equations, and some simplified versions, will be used as examples throughout
these notes. Although there are many other systems of conservation laws that are impor-
tant in various applications (some examples are mentioned below), the Euler equations
play a special role. Much of the theory of conservation laws was developed with these
equations in mind and many numerical methods were developed specifically for this sys-
tem. So, although the theory and methods are applicable much more widely, a good
knowledge of the Euler equations is required in order to read much of the available lit-
erature and benefit from these developments. For this reason, I urge you to familiarize
yourself with these equations even if your primary interest is far from gas dynamics.

The shock tube problem. A simple example that illustrates the interesting behavior
of solutions to conservation laws is the “shock tube problem” of gas dynamics. The
physical set-up is a tube filled with gas, initially divided by a membrane into two sections.
The gas has a higher density and pressure in one half of the tube than in the other half,
with zero velocity everywhere. At time ¢ = 0, the membrane is suddenly removed or
broken, and the gas allowed to flow. We expect a net motion in the direction of lower
pressure. Assuming the flow is uniform across the tube, there is variation in only one
direction and the one-dimensional Euler equations apply.

The structure of this flow turns out to be very interesting, involving three distinct
waves separating regions in which the state variables are constant. Across two of these
waves there are discontinuities in some of the state variables. A shock wave propagates
into the region of lower pressure, across which the density and pressure jump to higher
values and all of the state variables are discontinuous. This is followed by a contact dis-
continuity, across which the density is again discontinuous but the velocity and pressure
are constant. The third wave moves in the opposite direction and has a very different
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Figure 1.1. Solution to a shock tube problem for the one-dimensional Fuler equations.

structure: all of the state variables are continuous and there is a smooth transition. This
wave is called a rarefaction wave since the density of the gas decreases (the gas is
rarefied) as this wave passes through.

If we put the initial discontinuity at z = 0, then the resulting solution u(z,t) is
a “similarity solution” in the variable z/t, meaning that u(z,t) can be expressed as a
function of z/t alone, say u(z,t) = w(z/t). It follows that u(z,t) = u(az,at) for any
a > 0, so the solution at two different times ¢ and at look the same if we rescale the
z-axis. This also means that the waves move at constant speed and the solution u(z, t)
is constant along any ray z/t = constant in the z-t plane.

Figure 1.1 shows a typical solution as a function of z/t. We can view this as a plot of

the solution as a function of z at time ¢t = 1, for example. The structure of the solution
in the z-t plane is also shown.

In a real experimental shock tube, the state variables would not be discontinuous
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Figure 1.2. (a) Pressure contours for flow around an airfoil. (b) Pressure coefficient plot-
ted along the top and bottom surface. Figure taken from Yee and Harten[100]. (Reprinted
with permission.)

across the shock wave or contact discontinuity because of effects such as viscosity and heat
conduction. These are ignored in the Euler equations. If we include these effects, using the
full Navier-Stokes equations, then the solution of the partial differential equations would
also be smooth. However, these smooth solutions would be nearly discontinuous, in the
sense that the rise in density would occur over a distance that is microscopic compared to
the natural length scale of the shock tube. If we plotted the smooth solutions they would
look indistinguishable from the discontinuous plots shown in Figure 1.1. For this reason
we would like to ignore these viscous terms altogether and work with the simpler Euler
equations.

The Euler equations are used extensively in aerodynamics, for example in modeling
the flow of air around an aircraft or other vehicle. These are typically three dimensional
problems, although 2D and even 1D problems are sometimes of interest. A typical 2D
problem is the flow of air over an airfoil, which is simply the cross section of a wing.
Figure 1.2a (taken from Yee and Harten[100]) shows the contours of pressure in a steady
state solution for a particular airfoil shape when the freestream velocity is Mach 0.8. Note
the region above the upper surface of the airfoil where many contour lines coincide. This
is again a shock wave, visible as a discontinuity in the pressure. A weaker shock is visible
on the lower surface of the airfoil as well.

Small changes in the shape of an airfoil can lead to very different flow patterns, and
so the ability to experiment by performing calculations with a wide variety of shapes is
required. Of particular interest to the aerodynamical engineer is the pressure distribution
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along the airfoil surface. From this she can calculate the lift and drag (the vertical and
horizontal components of the net force on the wing) which are crucial in evaluating its
performance. Figure 1.2b shows the “pressure coefficient” along the upper and lower
surfaces. Again the shocks can be observed as discontinuities in pressure.

The location and strength of shock waves has a significant impact on the overall
solution, and so an accurate computation of discontinuities in the flow field is of great
importance.

The flow field shown in Figure 1.2 is a steady state solution, meaning the state
variables u(z,y,t) are independent of ¢. This simplifies the equations since the time
derivative terms drop out and (1.3) becomes

f(w)z + g(u)y = 0. (1.6)

In these notes we are concerned primarily with time-dependent problems. One way to
solve the steady state equation (1.6) is to choose some initial conditions (e.g. uniform
flow) and solve the time-dependent equations until a steady state is reached. This can
be viewed as an iterative method for solving the steady state equation. Unfortunately,
it is typically a very inefficient method since it may take thousands of time steps to
reach steady state. A wide variety of techniques have been developed to accelerate this
convergence to steady state by giving up time accuracy. The study of such acceleration
techniques is a whole subject in its own right and will not be presented here. However, the
discrete difference equations modeling (1.6) that are solved by such an iterative method
must again be designed to accurately capture discontinuities in the flow, and are often
identical to the spatial terms in a time-accurate method. Hence much of the theory
developed here is also directly applicable in solving steady state equations.

Unsteady problems also arise in aerodynamics, for example in modeling wing flutter,
or the flow patterns around rotating helicopter blades or the blades of a turbine. At high
speeds these problems involve the generation of shock waves, and their propagation and
interaction with other shocks or objects is of interest.

Meteorology and weather prediction is another area of fluid dynamics where conserva-
tion laws apply. Weather fronts are essentially shock waves — “discontinuities” in pressure
and temperature. However, the scales involved are vastly greater than in the shock tube
or airfoil problems discussed above, and the viscous and dissipative effects cause these
fronts to have a width of several miles rather than the fractions of an inch common in
aerodynamics.

Astrophysical modeling leads to systems of conservation laws similar to the Euler
equations for the density of matter in space. A spiral galaxy, for example, may consist of
alternating arms of high density and low density, separated by “discontinuities” that are
again propagating shock waves. In this context the shock width may be two or three light
years! However, since the diameter of a galaxy is on the order of 10° light years, this is
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Figure 1.8. Solution of the Buckley-Leverett equation at three different times.

still a small distance in relative terms. In particular, in a practical numerical calculation
the shock width may well be less than the mesh width.

Modeling the dynamics of a single star, or the plasma in a fusion reactor, also requires
conservation laws. These now involve electromagnetic effects as well as fluid dynamics.
The magnetohydrodynamics (MHD) equations are one system of this type.

Multiphase flow problems in porous materials give rise to somewhat different systems
of conservation laws. One important application area is secondary oil recovery, in which
water (with some additives, perhaps) is pumped down one well in an effort to force more
oil out of other wells. One particularly simple model is the Buckley-Leverett equation,
a scalar conservation law for a single variable u representing the saturation of water in
the rock or sand (u = 0 corresponds to pure oil, v = 1 to pure water). Figure 1.3
shows the solution to this 1D problem at three different times. Here the initial condition
is u(z,0) = 0 and a boundary condition u(0,t) = 1 is applied, corresponding to pure
water being pumped in at the left boundary. Note that the advancing front again has
a discontinuity, or propagating shock wave. The Buckley-Leverett equation is discussed
further in Chapter 4. More realistic models naturally involve systems of conservation laws
in two or three dimensions.

Systems of conservation laws naturally arise in a wide variety of other applications
as well. Examples include the study of explosions and blast waves, the propagation of
waves in elastic solids, the flow of glaciers, and the separation of chemical species by
chromatography, to name but a few.



