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PREFACE

Nanotechnology refers to any technology that uses nanoscopic objects or devices, ie.,
devices on the order of a nanometer (one nanometer is one billionth of a meter). This
is roughly the size one would obtain by shrinking a grain of sand by a factor of one thou-
sand, and then again by another factor of one thousand. Thus, it is the technology of the
very small.

While there has been considerable hype in the popular media about the promises,
and possible perils, of nanotechnology, the field is truly in its infancy. At this time it is
impossible to know which aspects of nanotechnology currently under consideration will lead
to mature, established fields and to practical applications. It is certain, however, that many
as-yet unimagined areas of nanotechnology will be developed in the future. It is also certain
that nanotechnology will play an increasingly important role in everyday life, as devices
move from the research laboratory to the commercial market.

To develop nanotechnology, scientists and engineers need to understand the funda-
mental physical principles governing objects having dimensions on the order of nanometers.
This is the realm of quantum mechanics, in general, as well as related areas in solid state
physics, chemistry, and biology. For example, although there are many proposals to develop
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X Preface

nanoscale devices based on electron movement in metals and semiconductors, there is also
considerable interest in developing chemical and biological computers, molecular electron-
ics, and other information processing devices outside of the traditional electron physics
disciplines.

This book was written to provide an introduction to fundamental concepts of nano-
electronics, including single electron effects and electron transport in nanoscopic systems,
for electrical engineers and applied scientists. The intended audience for the book is junior
and senior level undergraduate students, although it can also serve as an introduction to the
subject for beginning graduate students. Of paramount importance is the idea of understand-
ing quantum dots, quantum wires, and quantum wells, and nanoelectronic applications of
these structures. In particular, attention is focused on the quantization of electrical properties,
such as conductance quantization and ballistic transport in low-dimensional systems, quan-
tum interference effects arising from the wave nature of electrons, and tunneling phenomena
in nanoelectronic devices. Topics were chosen that emphasize, to a large degree, quantum
counterparts of classical electronic and electrical devices familiar to junior and senior level
undergraduate students, such as transistors and wires. The level of presentation assumes
that the reader has some background in basic physics, including fundamental concepts in
mechamcs, energy, and electromagnetics, and in electrical circuits and traditional electron-
ics. Furthermore, some basic knowledge of the physics of field-effect transistors would
be helpful. In the electrical engineering curriculum at most universities, such background
material has usually been covered by some point in the junior year.

Although quantum mechanics and solid state physics are treated at an introductory
level, the book is not intended to replace discipline specific books or courses in these areas.
However, in the ever-increasingly congested undergraduate curriculum at most institutions,
a course such as the one this book is intended to accompany can serve as an introduction
to the area, and spur interest for further study.
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