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Preface

The basic commodity of the scalable information infrastructure of the future will certainly be
represented in discrete alphabet form. Such information representations must be transmitted, stored,
and manipulated securely without error. Symmetric and asymmetric cryptosystems, as well as error-
control codes have already been indispensable components of many systems. However, notions of
complexity, scalability, and adaptability are becoming critical challenges for coding and data security
algorithms. Specifically, designing such algorithms with low power and low complexity for appli-
cations in widely used resource-limited hand-held devices and sensor networks is an increasingly
difficult task.

Finite-field wavelet transforms connect two areas: wavelets and finite-alphabet processing. They
were inspired by wavelet transforms defined over the real and the complex fields. Wavelets and
filter banks that operate on real or complex signals are already well established as powerful sig-
nal processing tools. They give an efficient signal representation that is localized in both time and
frequency. Therefore, they have found widespread applications in areas such as audio and video
compression and time—frequency analysis, and have also become a host to others. Like its real-
field counterpart, the essence of this book is to show that processing based on a newly developed
theory of wavelet transforms over finite alphabets can play a key role in symmetric cryptography,
public-key cryptosystems, digital signature schemes, error-control coding, and much more. The
book defines wavelet transform over finite fields and presents a framework for new approaches
to algebraic cryotography and error-control coding. It is hoped that this introduction of the rich
set of finite-alphabet processing techniques will serve as catalyst, stimulating further development
in both theory and practice of new coding and security schemes for resource-limited devices in
particular.

The book is intended as a source for researchers and scientists in areas of applied mathematics,
cryptography, and error-control coding. It can also be valuable for practitioners who wish to develop
cryptographic schemes. The writing style and the appendices are attempted to make it as self-
contained as possible. Some background in linear algebra, finite fields, signal processing, wavelets

ix



X Preface

and filter banks, cryptography, and coding theory is helpful. However, this familiarity can also be
picked up as needed.

Chapter 1 provides the notation used throughout the book, reviews some background in abstract
and linear algebra, and formally defines the unitary and paraunitary matrices. Readers interested in
more in-depth knowledge are referred to [10,109,125,177]. The rest of the book is divided into three
parts. Part I studies the discrete-time wavelet transform over arbitrary fields and the construction of
unitary and paraunitary matrices over fields of characteristic two. Chapter 2 provides reviews of
discrete Fourier transforms over finite fields and the related work on wavelets and filter banks over
finite fields. Chapter 3 analyzes discrete-time wavelet basis functions for infinite-dimensional signal
spaces over a general class of finite fields GF (p™) with emphasis on GF (27). Chapter 4 undertakes
the theory of multi-channel paraunitary filter banks over GF (2). It introduces the necessary and
sufficient elementary (prime) building blocks to construct orthogonal filter banks over these fields.
For background in signal processing, filter banks, and wavelets, [156, 192, 199, 203] are helpful
references.

Part II is completely devoted to multivariate cryptography via wavelets and paraunitary
matrices. Knowledge of basic concepts in cryptograph such as symmetric cryptography, stream
cipher, block cipher, public-key cryptography, and digital signature are necessary, which can be
obtained from [140, 190]. After a brief introduction and review of self-synchronizing stream ci-
phers, Part II presents a new proposal for a wavelet-based stream cipher. In Chap. 7, the authors
adopt a similar structure for the development of a wavelet-based block cipher. In fact, the similari-
ties between the wavelet stream and block ciphers allow the designer to implement them both on a
single chip as a bimodal cipher. At the end of Part II, paraunitary matrices from Part I are used to
study the module of multivariate polynomial vectors and provide general frameworks for the design
of new public key and signature schemes. The security of such systems is based on the difficulty
of solving systems of multivariate polynomial equations over finite fields. As a matter of fact, the
algebraic nature of the design is exploited to provide mathematical evidence, for the first time, that
relates the security of authors’ schemes to the difficulty of the claimed mathematical problem. In
addition, practical instances of these general designs are suggested and their efficiency are shown in
comparison with other existing designs.

Part III undertakes the application of wavelets and filter banks onto error-control coding. To
obtain the necessary background, one may refer to [128, 207]. The use of two-band wavelets and
filter banks in the construction of half-rate block codes over an arbitrary finite field is presented in
Chap. 10. This chapter applies two-band orthogonal wavelet systems to generate double-circulant
self-dual codes. It also describes a bounded-distance decoding technique for these codes. Then, using
multi-band orthogonal filter banks, a structure to generate arbitrary-rate block codes is developed
in Chap. 11. Along with other results concerning arbitrary-rate block codes, the implications of
the wavelet coding technique for the construction of tail-biting trellises that simplify soft-decision
decoding of some block codes are also discussed. The application of finite-field wavelets is extended
to the class of convolutional codes in Chap. 12. Some algebraic properties of wavelet convolutional
codes are also explored. Furthermore, new types of time-varying convolutional codes with unusual
trellises that reduce the decoding latency are introduced.

The authors wish to acknowledge John Cozzens’ program at NSF and the Georgia Tech
Broadband Institute (GTBI) for their support of this work. They are very grateful to many people
who contributed to the work. Specially, the authors wish to thank Ronald W. Schafer, Russell
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M. Mersereau, and Steven W. McLauglin at Georgia Tech, who contributed generously to the
development of the ideas in wavelets and error-control coding. They also thank Kevin Chan and
Mina Sartipi, who provided many valuable technical ideas and helped the development of the
wavelet block cipher and wavelet convolutional codes, respectively, during their graduate studies
at Georgia Tech. Finally, they greatly appreciate Tom Robbins, Alice Dworkin, Andrew Gilfillan,
and his colleagues at Pearson Prentice Hall for their support and for steering the project into the final
stage. Their reviewers enhanced the quality of the book further.

FARAMARZ FEKRI
FARSHID DELGOSHA
April 2010
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