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Preface

Important though the general concepts and propositions may be with
which the modern and industrious passion for axiomatizing and generalizing
has presented us, in algebra perhaps more than anywhere else, nevertheless |

am convinced that the special problems in all their complexity constitute the
stock and core of mathematics, and that to master their difficulties requires
on the whole the harder labor.

—Herman Weyl

This book began many years ago in the form of supplementary notes for my algebra classes.
I wanted to discuss some concrete topics such as symmetry, linear groups, and quadratic
number fields in more detail than the text provided, and to shift the emphasis in group theory
from permutation groups to matrix groups. Lattices, another recurring theme, appeared
spontaneously.

My hope was that the concrete material would interest the students and that it would
make the abstractions more understandable — in short, that they could get farther by learning
both at the same time. This worked pretty well. It took me quite a while to decide what to
include, but I gradually handed out more notes and eventually began teaching from them
without another text. Though this produced a book that is different from most others, the
problems I encountered while fitting the parts together caused me many headaches. I can’t
recommend the method.

There is more emphasis on special topics here than in most algebra books. They tended
to expand when the sections were rewritten, because I noticed over the years that, in contrast
to abstract concepts, with concrete mathematics students often prefer more to less. As a
result, the topics mentioned above have become major parts of the book.

In writing the book, I tried to follow these principles:

1. The basic examples should precede the abstract definitions.

2, Technical points should be presented only if they are used elsewhere in the book.
3. All topics should be important for the average mathematician.

Although these principles may sound like motherhood and the flag, I found it useful to have
them stated explicitly. They are, of course, violated here and there.

The chapters are organized in the order in which I usually teach a course, with linear
algebra, group theory, and geometry making up the first semester. Rings are first introduced
in Chapter 11, though that chapter is logically independent of many earlier ones. I chose
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this arrangement to emphasize the connections of algebra with geometry at the start, and
because, overall, the material in the first chapters is the most important for people in other
fields. The first half of the book doesn’t emphasize arithmetic, but this is made up for in the
later chapters.

About This Second Edition

The text has been rewritten extensively, incorporating suggestions by many people as well as
the experience of teaching from it for 20 years. I have distributed revised sections to my class
all along, and for the past two years the preliminary versions have been used as texts. As a
result, I’ve received many valuable suggestions from the students. The overall organization
of the book remains unchanged, though I did split two chapters that seemed long.

There are a few new items. None are lengthy, and they are balanced by cuts made
elsewhere. Some of the new items are an early presentation of Jordan form (Chapter 4), a
short section on continuity arguments (Chapter 5), a proof that the alternating groups are
simple (Chapter 7), short discussions of spheres (Chapter 9), product rings (Chapter 11),
computer methods for factoring polynomials and Cauchy’s Theorem bounding the roots of a
polynomial (Chapter 12), and a proof of the Splitting Theorem based on symmetric functions
(Chapter 16). I've also added a number of nice exercises. But the book is long enough, so
I’ve tried to resist the temptation to add material.

NOTES FOR THE TEACHER

This book is designed to allow you to choose among the topics. Don’t try to cover the book,
but do include some of the interesting special topics such as symmetry of plane figures, the
geometry of SU», or the arithmetic of imaginary quadratic number fields. If you don’t want
to discuss such things in your course, then this is not the book for you.

There are relatively few prerequisites. Students should be familiar with calculus, the
basic properties of the complex numbers, and mathematical induction. An acquaintance with
proofs is obviously useful. The concepts from topology that are used in Chapter 9, Linear
Groups, should not be regarded as prerequisites.

I recommend that you pay attention to concrete examples, especially throughout the
early chapters. This is very important for the students who come to the course without a
clear idea of what constitutes a proof.

One could spend an entire semester on the first five chapters, but since the real fun
starts with symmetry in Chapter 6, that would defeat the purpose of the book. Try to get
to Chapter 6 as soon as possible, so that it can be done at a leisurely pace. In spite of its
immediate appeal, symmetry isn’t an easy topic. It is easy to be carried away and leave the
students behind.

These days most of the students in my classes are familiar with matrix operations and
modular arithmetic when they arrive. I've not been discussing the first chapter on matrices
in class, though I do assign problems from that chapter. Here are some suggestions for
Chapter 2, Groups.

1. Treat the abstract material with a light touch. You can have another go at it in Chapters 6
and 7.



\'s

2. For examples, concentrate on matrix groups. Examples from symmetry are best deferred
to Chapter 6.

3. Don’t spend much time on arithmetic; its natural place in this book is in Chapters 12
and 13.

4. De-emphasize the quotient group construction.

Quotient groups present a pedagogical problem. While their construction is concep-
tually difficult, the quotient is readily presented as the image of a homomorphism in most
elementary examples, and then it does not require an abstract definition. Modular arithmetic
is about the only convincing example for which this is not the case. And since the integers
modulo » form a ring, modular arithmetic isn’t the ideal motivating example for quotients
of groups. The first serious use of quotient groups comes when generators and relations are
discussed in Chapter 7. I deferred the treatment of quotients to that point in early drafts
of the book, but, fearing the outrage of the algebra community, I eventually moved it to
Chapter 2. If you don’t plan to discuss generators and relations for groups in your course,
then you can defer an in-depth treatment of quotients to Chapter 11, Rings, where they play
a central role, and where modular arithmetic becomes a prime motivating example.

In Chapter 3, Vector Spaces, I've tried to set up the computations with bases in such a
way that the students won’t have trouble keeping the indices straight. Since the notation is
used throughout the book, it may be advisable to adopt it.

The matrix exponential that is defined in Chapter 5 is used in the description of one-
parameter groups in Chapter 10, so if you plan to include one-parameter groups, you will
need to discuss the matrix exponential at some point. But you must resist the temptation to
give differential equations their due. You will be forgiven because you are teaching algebra.

Except for its first two sections, Chapter 7, again on groups, contains optional material.
A section on the Todd-Coxeter algorithm is included to justify the discussion of generators
and relations, which is pretty useless without it. It is fun, too.

There is nothing unusual in Chapter 8, on bilinear forms. I haven’t overcome the main
pedagogical problem with this topic — that there are too many variations on the same theme,
but have tried to keep the discussion short by concentrating on the real and complex cases.

In the chapter on linear groups, Chapter 9, plan to spend time on the geometry of SU,.
My students complained about that chapter every year until I expanded the section on SUs,
after which they began asking for supplementary reading, wanting to learn more. Many of
our students aren’t familiar with the concepts from topology when they take the course, but
I've found that the problems caused by the students’ lack of familiarity can be managed.
Indeed, this is a good place for them to get an idea of a manifold.

I resisted including group representations, Chapter 10, for 2 number of years, on the
grounds that it is too hard. But students often requested it, and I kept asking myself: If the
chemists can teach it, why can’t we? Eventually the internal logic of the book won out and
group representations went in. As a dividend, hermitian forms got an application.

You may find the discussion of quadratic number fields in Chapter 13 too long for a
general algebra course. With this possibility in mind, I've arranged the material so that the
end of Section 13.4, on ideal factorization, is a natural stopping point.

It scemed to me that one should mention the most important examples of fields in a
beginning algebra course, so I put a discussion of function fields into Chapter 15. There is
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always the question of whether or not Galois theory should be presented in an undergraduate
course, but as a culmination of the discussion of symmetry, it belongs here.

Some of the harder exercises are marked with an asterisk.

Though I’ve taught algebra for years, various aspects of this book remain experimental,
and I would be very grateful for critical comments and suggestions from the people who use it.
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““One, two, three, five, four...”
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CHAPTER 1

Matrices

Eefttich wieS olles Sasfenipe vine @Btishe penennt,
welches einer Beemefrung obec efnes Beemindernng fithig iff,
ofee wogu fich noch efwas Gingufesen ofer Sabon wegnelhmen HRK.

—Leonhard Euler!

Matrices play a central role in this book. They form an important part of the theory, and
many concrete examples are based on them. Therefore it is essential to develop facility in
matrix manipulation. Since matrices pervade mathematics, the techniques you will need are
sure to be useful elsewhere.

1.1 THE BASIC OPERATIONS

Let m and n be positive integers. An m Xn matrix is a collection of mn numbers arranged
in a rectangular array

n columns
a; - Qn
(1.1.1) m rows :
Ami *'* Qmn

210
1 35
a symbol such as A to denote a matrix.

The numbers in a matrix are the matrix entries. They may be denoted by q; j, where i
and j are indices (integers) with 1 <i <m and 1 < j < n, the index i is the row index, and
J-is the column index. So a; j is the entry that appears in the ith row and jth column of the
matrix: '

For example, [ ] is a2 X3 matrix (two rows and three columns). We usually introduce

il --- a;j

IThis is the opening sentence of Euler’s book Algebra, which was published in St. Petersburg in 1770.



