iOSK R ETXBh (&)

Hacking and
Securing iOS
Applications

O’REILLY"

% 5 +'% HER Jonathan Zdziarski Z&

iOSE B R 2B wam

Hacking and Securing i0S Applications

Jonatban ZdziarskiZ

O’REILLY"®

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo
O’Reilly Media, Inc. 3 A & dy X 5 s JiAL iR

REKRF HRA

EHEEKE (CIP) Biig

i08 R HZLBBh: FI/GERERIE (Zdziarski, J.)
% —WEIR . TR RERFHRE, 20126

- 43 Hacking and Securing iOS Applications

ISBN 978-7-5641-3446-4

L @i ILO - ILOCES-BFFHF-%X
QOHEHLIAL — AR -3 IV. @ TP312 @ TP393.08

HE R A B 4518 CIP H3EEF (2012) 3089056 5

ILAERBUREER & RI%IC
E%F. 10-2012-157 &

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2012. Authorized reprint of the original English edition, 2012 O’Reilly Media, Inc., the owner of all rights

to publish and sell the same.

All rights fcserved including the rights of reproduction in whole or in part in any form.
% X B 3 d O’Reilly Media, Inc. 34 2012,

LW PR W A b KF b AL R 2012, 30 % 6P RREY o MR Awdl B R 2]k AR A 4K B ALY BT A —— O'Reilly
Media, Inc. #3457,

WAL R, ABBEET, KB HETRI>F 2 RRF Y X £,

i0S B FZ2%BE (R2ETRR)

MR KT : R AKEHRE

oo db. ERNE#25 BB4w . 210096
R AN LEAF

i ht . http://www.seupress.com

B, FHBfd . press@seupress.com

EN Rl ;e ELRIAE PR 2S]

A, 7187%H x 980 &K 16 F &
k. 22.25

. 436 F=%

k: 20286 AE 11K
/4

i

fir

: 201246 B4 1 (RENRI
. ISBN 978-7-5641-3446-4

. 59.00 7% (##) .
FILEPEANERBAE, HERSEHHER, BIE ((5H): 02583791830

o= g

O’Reilly Media, Inc.4148

O’Reilly Mediaiiit B 45, k. LIRS . RAEHRMKINEHAEBLFMIA. H19784
Fih, O'Reilly—HERMGEBRONIEEHEDE . BERFMTEEITCERRE, WBAIx
HEFEENERBE-—F T B “HEErES" RS & FRER A, Y
BAMRKHERINZ 5%, OReillyWRBRERH I HEIFHNES. fEmEBEX.

O'Reilly AR FF XN AFERE AR “ShpH” , OBRE—/HLMs (GNN) , HEAT
RMmMETR A BIR R GE S, UETHRKGSHULam A 8130 T MakeZkE, MBS
DIY¥# A EEeE, —wliEhad 2 e E B S ANAN, O ReillylI&imiEs
BRTREEEARFFEWLTEAT R L Sis, LRSS A IR LS, AR
ARALREUE BAVEE, OReillyB/EER LR ERIVMIAGEL T BN TREILA . ik
PEHR, FLRESTRERZIRE, F WO ReillyWi™= HEDRIR T 4 WA R 3B —
ERRERUFHIHE.

LT

“O’Reilly Radart¥ B A o %, ~
Wired

“OReillyfRfE— %7 (AFLZEMBLBET) FABERITRETT £AHLE, "

——DBusiness 2.0

“O’Reilly Conference £ R & X4 & Ak o) a3 38, 7
——CRN

“—AOReillyty BHKE—AMH A, HiTx, FREIhza, 7

Irish Times

“TimRAEH L RAHTA, AXARTRRKE, R HOLF, F B R
Yogi Berrat &M T : ‘foRIRASR LBHA LR o, ADH (2%) . 9H
B, TimAFHF—RAREHFT DB, REHLRRA-NFPEHNE, FEXB
LT, T

——Linux Journal

Steve: The coolest cat. We loved the chase!

- Hackers and tinkerers everywhere

Preface

Data is stolen; this is no uncommon occurrence. The electronic information age has
made the theft of data a very lucrative occupation. Whether it’s phishing scams or large-
scale data breaches, criminals stand to greatly benefit from electronic crimes, making
their investment well worth the risk. When I say that this occurrence is not uncommon,
my goalisn’t to be dismissive, but rather to alarm you. The chances that your company’s
applications will be vulnerable to attack are very high. Hackers of the criminal variety
have an arsenal of tools at their disposal to reverse engineer, trace, and even manipulate
applications in ways that most programmers aren’t aware. Even many encryption im-
plementations are weak, and a good hacker can penetrate these and other layers that,
so many times, present only a false sense of security to the application’s developers.

Take everything hackers collectively know about security vulnerability and apply it to
a device that is constantly connected to a public network, wrapped up in a form factor
that can fit in your pocket and is frequently left at bars. Your company’s applications,
and the data they protect, are now subject to simpler forms of theft such as pickpock-
eting, file copies that can take as little as a few minutes alone with a device, or malicious
injection of spyware and root kits—all of which can be performed as the device’s owner
reaches for another drink. One way or another, software on a mobile platform can be-
easily stolen and later attacked at the criminal’s leisure, sometimes without the device’s
owner even knowing, and sometimes without physical access to the device.

This book is designed to demonstrate many of the techniques black hats use to steal
data and manipulate software in an attempt to show you, the developer, how to avoid
many all too common mistakes that leave your applications exposed to easy attacks.
These attacks are not necessarily limited to just the theft of data from the device, but
can sometimes even lead to much more nefarious attacks. In this book, you’ll see an
example of how some credit card payment processing applications can be breached,
allowing a criminal to not only expose the credit card data stored on the device, but
also to manipulate the application to grant him huge credit card refunds for purchases
that he didn’t make, paid straight from the merchant’s stolen account. You'll see many
more examples, too, of exploits that have made mobile applications not just a data risk,
but downright dangerous to those using them. The reader will also gain an under-
standing of how these attacks are executed, and many examples and demonstrations

Xi

of how to code more securely in ways that won’t leave applications exposed to such
attacks.

Audience of This Book

This book is geared toward 10S developers looking to design secure applications. This
is not necessarily limited to government or financial applications, but may also pertain
to applications with assets or other features that the developer is looking to protect.
You'll need a solid foundation of Objective-C coding on iOS to understand a majority
of this book. A further understanding of C or assembly language will also help, but is
not required.

While this book primarily focuses on iOS, much of the material can also be applied
directly to the Mac OS X desktop. Given that both environments run an Objective-C
environment and share many of the same tools, you’ll find much of this book can be
used to expose vulnerabilities in your company’s desktop applications as well.

Organization of the Material

This book is split into two halves. The first half discusses hacking and exposes the many
vulnerabilities in iOS and iOS applications, while the second half covers techniques to
better secure applications.

Chapter 1 explains the core problem with mobile security, and outlines common myths,
misconceptions, and overall flaws in many developers’ ways of thinking about security.

Chapter 2 introduces the reader to many techniques of compromising an iOS device,
including jailbreaking. The reader will learn how to build and inject custom code into
an i0S device using popular jailbreaking techniques and custom RAM disks.

Chapter 3 demonstrates how the filesystern of an iOS device can be stolen in minutes,
and how developers can’t rely solely on a manufacturer’s disk encryption. You'll also
learn about some common social engineering practices that secure access to a device
without the owner’s knowledge. '

Chapter 4 covers the forensic data left by the operating system, and what kind of in-
formation one can steal from a device.

Chapter 5 explains how i0S’s keychain encryption and data protection encryption can
be defeated, and the inherent problems of each.

Chapter 6 demonstrates how the HFS journal can be scraped for deleted files, and
provides examples of how to securely delete files so they cannot be recovered.

Chapter 7 introduces you to tools for spying on and manipulating the runtime envi-
ronment, and demonstrates how black hat hackers can manipulate your application’s
objects, variables, and methods to bypass many layers of security.

xii | Preface

Chapter 8 introduces you to tools and approaches for disassembling and debugging
your application, injecting malicious code, and performing low-level atracks using a

number of techniques.

Chapter 9 illustrates some of the tools used to hijack SSL sessions, and how to protect
your application from falling victim to these attacks.

Chapter 10 elaborates on security and describes additional methods to protect your
data with proper encryption techniques.

Chapter 11 explains how to help prevent forensic data leakage by designing your ap-
plication to leave fewer traces of information.

Chapter 12 explains many best practices to increase the complexity needed for an attack
on your applications.

Chapter 13 explains techniques used to detect when an application is running on a
device jailbroken with some of the popular jailbreaking tools available.

Chapter 14 wraps up the book and explains how important it is to understand and
strategize like your adversary.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords. :

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W a
A
Gt This icon signifies a tip, suggestion, or general note.
LA

-
wh o

This icon indicates a warning or caution.

Preface | xiii

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hacking and Securing iOS Applications by
Jonathan Zdziarski. Copyright 2012 Jonathan Zdziarski, (ISBN 9781449318741).”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Legal Disclaimer

The technologies discussed in this publication, the limitations on these technologies
that the technology and content owners seek to impose, and the laws actually limiting
the use of these technologies are constantly changing. Thus, some of the hacks de-
scribed in this publication may not work, may cause unintended harm to equipment
or systems on which they are used, or may be inconsistent with applicable law or user
agreements. Your use of these projects is at your own risk, and O’Reilly Media, Inc.
disclaims responsibility for any damage or expense resulting from their use. In any
event, you should take care that your use of these projects does not violate any appli-
cable laws, including copyright laws.

Safari® Books Online

S .3 Safari Books Online is an on-demand digital library that lets you easily
aa..,..a.......' search over 7,500 tLechnology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

xiv | Preface

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/9781449318741
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: hitp://facebook.com/oreilly
Follow us on Twitter: hetp://twitter.com/oreillymedia

Watch us on YouTube: http://www. youtube.com/oreillymedia

Preface | xv

Table of Contents

Preface bt e e teeereeseeetnan b e rtratensseeesar bt a bty Xi
1. Everything YouKnowisWrongc..ccovvvnnnen. Cereres o1
The Myth of a Monoculture 2
The i0S Security Model 5
Components of the i0S Security Model 5
Storing the Key with the Lock 7
Passcodes Equate to Weak Security 9
Forensic Data Trumps Encryption 10
External Data Is at Risk, Too 11
Hijacking Traffic 11
Data Can Be Stolen...Quickly 12
Trust No One, Not Even Your Application 13
Physical Access Is Optional 14
Summary 15
Partl. Hacking
2, The Basics of Compromisingi0Scoviiiininriininnnennenn, 19
Why It’s Important to Learn How to Break Into a Device 19
Jailbreaking Explained 20
Developer Tools 20
End User Jailbreaks 23
Jailbreaking an iPhone 23
DFU Mode 25
Tethered Versus Untethered 26
Compromising Devices and Injecting Code 26
Building Custom Code 28
Analyzing Your Binary 29
Testing Your Binary 32
Daemonizing Code 34

Deploying Malicious Code with a Tar Archive 37

Deploying Malicious Code with a RAM Disk 38
Exercises 50
Summary 51

3. Stealing the Filesystem N ceveans Cererseteranrenas .. 53
Full Disk Encryption 53

Solid State NAND 54

Disk Encryption 54

Where i0S Disk Encryption Has Failed You 56
Copying the Live Filesystem 56

The DataTheft Payload 57

Customizing launchd 65

Preparing the RAM disk 70

Imaging the Filesystem 71
Copying the Raw Filesystem 73

The RawTheft Payload 73

Customizing launchd 78

Preparing the RAM disk 79

Imaging the Filesystem 79
Exercises 80
The Role of Social Engineering 81

Disabled Device Decoy 81

Deactivated Device Decoy 82

Malware Enabled Decoy 83

Password Engineering Application 84
Summary 84

4. Forensic Trace and Data Leakage Civesses esseendeitieterrinriesnrnns 87
Extracting Image Geotags ‘ 88

Consolidated GPS Cache 89
SQLite Databases 91

Connecting to a Database 91

SQLite Built-in Commands 92

Issuing SQL Queries 93

Important Database Files 93

Address Book Contacts 93

Address Book Images 95

Google Maps Data 97

Calendar Events 101

Call History 103

Email Database 103

Notes 105

vi | Table of Contents

Photo Metadata

105

SMS Messages 105
Safari Bookmarks 106
SMS Spotlight Cache 106
Safari Web Caches 107
Web Application Cache 107
WebKit Storage 107
Voicemail 107
Reverse Engineering Remnant Database Fields 108
SMS Drafts 110
Property Lists 110
Important Property List Files 111
Other Important Files 115
Summary 117
Defeating ENCryptionoiiviiiiiniiiiiiiiiineiieerineennnenns. .. 119
Sogeti’s Data Protection Tools 119
Installing Data Protection Tools 120
Building the Brute Forcer 120
Building Needed Python Libraries 121
Extracting Encryption Keys 122
The KeyTheft Payload 122
Customizing Launchd 123
Preparing the RAM disk 124
Preparing the Kernel 125
Executing the Brute Force 125
Decrypting the Keychain 128
Decrypting Raw Disk 130
Decrypting iTunes Backups 131
Defeating Encryption Through Spyware 132
The SpyTheft Payload 133
Daemonizing spyd 137
Customizing Launchd 137
Preparing the RAM disk 138
Executing the Payload - 139
Exercises 139
Summary 140
Unobliterating Files Cenretteiesnterestttenranneens L. 141
Scraping the HFS Journal 142
Carving Empty Space 144
Commonly Recovered Data 144
Application Screenshots 144

Table of Contents | il

Deleted Property Lists 146

Deleted Voicemail and Voice Recordings 146
Deleted Keyboard Cache 146
Photos and Other Personal Information 146
Summary 147
7. Manipulating the Runtimecoiiiiiiiinininne, Cerrierienianes 149
Analyzing Binaries 150
The Mach-O Format 150
Introduction to class-dump-z 154
Symbol Tables 155
Encrypted Binaries 156
Calculating Offsets 158
Dumping Memory 159
Copy Decrypted Code Back to the File 161
Resetting the cryptid 161
Abusing the Runtime with Cycript 163
Installing Cycript 164
Using Cycript 164
Breaking Simple Locks 166
Replacing Methods 172
Trawling for Data 174
Logging Data 177
More Serious Implications 177
Exercises 185
SpringBoard Animations 185
Call Tapping...Kind Of 186
Making Screen Shots 187
Summary 187
8. Abusing the RuntimeLibrary, 189
Breaking Objective-C Down 189
Instance Variables 191
Methods 191
Method Cache 192
Disassembling and Debugging 193
Eavesdropping 197
The Underlying Objective-C Framework 199
Interfacing with Objective-C 201
Malicious Code Injection 203
The CodeTheft Payload 203
Injection Using a Debugger 204
Injection Using Dynamic Linker Attack 206

viii | Table of Contents

Full Device Infection

207

Summary 208
9. Hijacking Trafficooviiiiiiiiniieiiiiiiiiiiiiieiiee . 209
APN Hijacking 209
Payload Delivery 212
Removal 214
Simple Proxy Setup 214
Attacking SSL 215
SSLStrip 216
Paros Proxy 217
Browser Warnings 219
Attacking Application-Level SSL Validation 222
The SSLTheft Payload 222
Hijacking Foundation HTTP Classes 228
The POSTTheft Payload 228
Analyzing Data 231
Driftnet 232
Building 233
Running 234
Exercises 234
Summary 236
Partll. Securing
10. Implementing Encryptioncovviiiiiiiiiiiiiiiieii, vevesas 24
Password Strength 241
Beware Random Password Generators 244
Introduction to Common Crypto 244
Stateless Operations 245
Stateful Encryption 249
Master Key Encryption 252
Geo-Encryption 257
Geo-Encryption with Passphrase 260
Split Server-Side Keys 262
Securing Memory 264
Wiping Memory 265
Public Key Cryptography 266
Exercises 270
11. Counter Forensics Ceeriiaens Crrerestriienns N .. 273
Secure File Wiping 273

Table of Contents | ix

DOD 5220.22-M Wiping 274

Objective-C 275
Wiping SQLite Records 277
Keyboard Cache 282
Randomizing PIN Digits 283
Application Screenshots 285

12. SecuringtheRuntimeccoeiiiiiiiinnenn, Ceerrieennes veens 287
Tamper Response 287

Wipe User Data 288

Disable Network Access 289

Report Home 289

Enable Logging 289

False Contacts and Kill Switches 290
Process Trace Checking 291
Blocking Debuggers 293
Runtime Class Integrity Checks 295

Validating Address Space 295
Inline Functions 306
Complicating Disassembly 312

Optimization Flags 313

Stripping 317

They’re Fun! They Roll! -funroll-loops 323
Exercises 326

13. Jailbreak Detectioncocviiiiiiiiiiiiii i, ererireeeeae. ... 327
Sandbox Integrity Check 328
Filesystem Tests 329

Existence of Jailbreak Files 329

Size of /etc/fstab 331

Evidence of Symbolic Linking 331
Page Execution Check 332

14, NextStepscoovvviveiiianann. Cerrieiereen. e ttieereeerenas 333
Thinking Like an Attacker 333
Other Reverse Engineering Tools 333
Security Versus Code Management 334
A Flexible Approach to Security 335
Other Great Books 336

x | Table of Contents

CHAPTER 1
Everything You Know Is Wrong

Secure coding is about increasing the complexity demanded for an attack against the
application to succeed. No application can ever be truly secure. With the right resources
and time, any application, including those utilizing strong encryption, can be broken.
The determination of how secure an application is depends on the trade-off between
the time and complexity of an attack versus the value of the resource when it is
breached. For example, a list of stolen credit card numbers is very useful to an attacker
—if that list is only 10 minutes old. After 24 hours, the value of this data becomes
increasingly diminished, and after a week it is virtually worthless. Securing an appli-
cation is about increasing the complexity needed to attack it, so that the resource—
when breached—will have a significantly diminished value to the attacker. Increasing
the complexity needed for an attack also reduces the pool size of potential attackers.
That is, attacks requiring higher skillsets reduce the number of people capable of at-
tacking your application.

The term mobile security, as used in the marketplace today, has fallen out of sync with
this premise. For many, security has become less about attack complexiry and more
about reducing overhead by depending on a monoculture to provide secure interfaces.
As it pertains to iOS, this monoculture consists of a common set of code classes from
the manufacturer to provide password encryption routines, user interface security, file
system encryption, and so on. In spite of the many great advancements in security that
Apple has made, the overall dependence on the operating system has unfortunately had
the opposite effect on the security of applications: it has made them less complex, and
given the keys out for every single application when the monoculture is breached.

We use words like “encryption” as if they are inherently secure solutions to the decades-
old problem of data theft, yet countless millions of seemingly encrypted credit card
“numbers, social security numbers, and other personal records have been stolen over
the years. Application developers are taught to write secure applications, but never told
that they can’t even trust their own runtime. Bolting on SSL has become the norm, even
though a number of artacks against SSL have been successfully used to rip off credentials
and later to empty bank accounts. Everything we are taught about security is wrong,
because the implementation is usually wrong. Even well thought out implementations,

