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For whom 1s this book written?

Crow’s Law: Do not think what you want to think until you
know what you ought to know.!

Linear algebra is a living, active branch of mathematical research which
is central to almost all other areas of mathematics and which has impor-
tant applications in all branches of the physical and social sciences and in
engineering. However, in recent years the content of linear algebra courses
required to complete an undergraduate degree in mathematics — and even
more so in other areas — at all but the most dedicated universities, has been
depleted to the extent that it falls far short of what is in fact needed for
graduate study and research or for real-world application. This is true not
only in the areas of theoretical work but also in the areas of computational
matrix theory, which are becoming more and more important to the work-
ing researcher as personal computers become a common and powerful tool.
Students are not only less able to formulate or even follow mathematical
proofs, they are alse less able to understand the underlying mathematics
of the numerical algorithms they must use. The resulting knowledge gap
has led to frustration and recrimination on the part of both students and
faculty alike, with each silently — and sometimes not so silently — blaming
the other for the resulting state of affairs. This book is written with the
intention of bridging that gap. It was designed be used in one or more of
several possible ways:

(1) As a self-study guide;

(2) As a textbook for a course in advanced linear algebra, either at the
upper-class undergraduate level or at the first-year graduate level; or

(3) As a reference book.

It is also designed to be used to prepare for the linear algebra portion of
prelim exams or PhD qualifying exams.

This volume is self-contained to the extent that it does not assume any
previous knowledge of formal linear algebra, though the reader is assumed
to have been exposed, at least informally, to some basic ideas or techniques,
such as matrix manipulation and the solution of a small system of linear
equations. It does, however, assume a seriousness of purpose, considerable

1This law, attributed to John Crow of King’s College, London, is quoted by R. V.
Jones in his book Most Secret War.
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X For whom is this book written?

motivation, and modicum of mathematical sophistication on the part of
the reader.

The book also contains a large number of exercises, many of which are
quite challenging, which I have come across or thought up in over thirty
years of teaching. Many of these exercises have appeared in print before,
in such journals as American Mathematical Monthly, College Mathemat-
ics Journal, Mathematical Gazette, or Mathematics Magazine, in various
mathematics competitions or circulated problem collections, or even on the
internet. Some were donated to me by colleagues and even students, and
some originated in files of old exarns at various universities which I have
visited in the course of my career. Since, over the years, I did not keep
track of their sources, all I can do is offer a collective acknowledgement to
all those to whom it is due. Good problem formulators, like the God of the
abbot of Citeaux, know their own. Deliberately, difficult exercises are not
marked with an asterisk or other symbol. Solving exercises is an integral
part of learning mathematics and the reader is definitely expected to do
so, especially when the book is used for self-study.

Solving a problem using theoretical mathematics is often very differ-
ent from solving it computationally, and so strong emphasis is placed on
the interplay of theoretical and computational results. Real-life imple-
mentation of theoretical results is perpetually plagued by errors: errors in
modelling, errors in data acquisition and recording, and errors in the com-
putational process itself due to roundoff and truncation. There are further
constraints imposed by limitations in time and memory available for com-
putation. Thus the most elegant theoretical solution to a problem may not
lead to the most efficient or useful method of solution in practice. While
no reference is made to particular computer software, the concurrent use
of a personal computer equipped symbolic-manipulation software such as
MAPLE, MATHEMATICA, MATLAB or MUPAD is definitely advised.

In order to show the “human face” of mathematics, the book also in-
cludes a large number of thumbnail photographs of researchers who have
contributed to the development of the material presented in this volume.

Acknowledgements. Most of the first edition this book was written
while the I was a visitor at the University of Iowa in Iowa City and at the
University of California in Berkeley. I would like to thank both institu-
tions for providing the facilities and, more importantly, the mathematical
atmosphere which allowed me to concentrate on writing. This edition was
extensively revised after I retired from teaching at the University of Haifa
in April, 2004.

I have talked to many students and faculty members about my plans for
this book and have obtained valuable insights from them. In particular, I
would like to acknowledge the aid of the following colleagues and students
who were kind enough to read the preliminary versions of this book and
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offer their comments and corrections: Prof. Daniel Anderson (University
of Iowa), Prof. Adi Ben-Israel (Rutgers University), Prof. Robert Cacioppo
(Truman State University), Prof. Joseph Felsenstein (University of Wash-
ington), Prof. Ryan Skip Garibaldi (Emory University), Mr. George Kirkup
(University of California, Berkeley), Prof. Earl Taft (Rutgers University),
Mr. Gil Varnik (University of Haifa).

Photo credits. The photograph of Dr. Shmuel Winograd is used with
the kind permission of the Department of Computer Science of the City
University of Hong Kong. The photographs of Prof. Ben-Israel, Prof. Blass,
Prof. Kublanovskaya, and Prof. Strassen are used with their respective
kind permissions. The photograph of Prof. Greville is used with the
kind permission of Mrs. Greville. The photograph of Prof. Rutishauser
is used with the kind permission of Prof. Walter Gander. The photograph
of Prof. V. N. Faddeeva is used with the kind permission of Dr. Vera Si-
monova. The photograph of Prof. Zorn is used with the kind permission
of his son, Jens Zorn. The photograph of J. W. Givens was taken from
a group photograph of the participants at the 1964 Gatlinburg Conference
on Numerical Algebra. All other photographs are taken from the MacTu-
tor History of Mathematics Archive website (http://www-history.mes.st-
andrews.ac.uk/history/index.html), the portrait gallery of mathematicians
at the Trucsmatheux website (http://trucsmaths.free.fr/), or similar web-
sites. To the best knowledge of the managers of those sites, and to the best
of my knowledge, they are in the public domain.
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1

Notation and terminology

Sets will be denoted by braces, { }, between which we will either enumer-
ate the elements of the set or give a rule for determining whether something
is an element of the set or not, as in {x | p(z)}, which is read “the set of
all = suchthat p(z)”. If a isanelement of aset A we write a € A; if
it is not an element of A, we write a ¢ A. When one enumerates the ele-
ments of a set, the order is not important. Thus {1,2,3,4} and {4,1,3,2}
both denote the same set. However, we often do wish to impose an order
on sets the elements of which we enumerate. Rather than introduce new
and cumbersome notation to handle this, we will make the convention that
when we enumerate the elements of a finite or countably-infinite set, we
will assume an implied order, reading from left to right. Thus, the implied
order on the set {1,2,3,...} is indeed the usual one. The empty set,
namely the set having no elements, is denoted by @. Sometimes we will
use the word “collection” as a synonym for “set”, generally to avoid talking
about “sets of sets”.

A finite or countably-infinite selection of elements of a set A is a list.
Members of a list are assumed to be in a definite order, given by their
indices or by the implied order of reading from left to right. Lists are
usually written without brackets: ai,...,an, though, in certain contexts,
it will be more convenient to write them as ordered n-tuples (ai,---,@n)-
Note that the elements of a list need not be distinct: 3,1,4,1,5,9 is a list
of six positive integers, the second and fourth elements of which are equal
to 1. A countably-infinite list of elements of a set A is also often called
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2 1. Notation and terminology

a sequence of elements of A. The set of all distinect members of a list is
called the underlying subset of the list.

If A and B are sets, then their union AU B is the set of all elements
that belong to either A or B, and their intersection AN B is the
set of all elements belonging both to A and to B. More generally, if
{A: | i€ Q} is a (possibly-infinite) collection of sets, then {J;c(, Ai is the
set of all elements that belong to at least one of the A; and ﬂieﬂ A; is
the set of all elements that belong to all of the A;. If A and B are sets,
then the difference set A~ B is the set of all elements of A which do
not belong to B.

A function f from a nonempty set A to a nonempty set B is a rule
which assigns to each element a of A a unique element f(a) of B. The
set A is called the domain of the function and the set B is called the
range of the function. To denote that f is a function from A to B,
we write f: A — B. To dencte that an element & of B is assigned to
an element a of A by f, we write f:aw— b. (Note the different form
of the arrow!) This notation is particularly helpful in the case that the
function f is defined by a formula. Thus, for example, if f is a function
from the set of integers to the set of integers defined by f:a s a®, then
we know that f assigns to each integer its cube. The set of all functions
from a nonempty set A to a nonempty set B is denoted by BA. If
f € BA andif A’ is a nonempty subset of A, then the restriction of
f to A" is the function f': A’ — B defined by f':a’ — f(a’) for all
a €A

Functions f and g in B4 are equal if and only if f(a) = g(a) for all
a € A. In this case we write f =g. A function f € B4 is monic if and
only if it assigns different elements of B to different elements of A, i.e. if
and only if f(a;) # f(az) whenever a; # a2 in A. A function f € BA
is epic if and only if every element of B is assigned by f to some element
of A. A function which is both monic and epic is bijective. A bijective
function from a set A to aset B determines a bijective correspondence
between the elements of A and the elementsof B. If f: A— B isa
bijective function, then we can define the inverse function f~!: B — A
defined by the condition that f~1(b) = a if and only if f(a) = b. This
inverse function is also bijective. A bijective function from a set A to
itself is a permutation of A. Note that there is always at least one
permutation of any nonempty set A, namely the identity function a — a.

The cartesian product A; x A> of nonempty sets A; and Ap is
the set of all ordered pairs {a;,az), where a; € A; and a2 € A;. More
generally, if Aj,..., A, is a list of nonempty sets, then A; x...x A, is
the set of all ordered n-tuples (ay,...,an) satisfying the condition that
a; € A; for each 1 <i<n. Note that each ordered n-tuple (a,,...,a,)



1. Notation and terminology 3

uniquely defines a function f:{1,...,n} - UL A; givenby f:i— qa;
for each 1 < i < n. Conversely, each function f:{1,...,n} - U/, 4
satisfying the condition that f(i) € A; for 1 < i < n, defines such
an ordered n-tuple, namely (f(1),..., f(n)). This suggests a method for
defining the cartesian product of an arbitrary collection of nonempty sets.
If {A;|7€ 8} isan arbitrary collection of nonempty sets, then the set
[licq Ai is defined to be the set of all those functions f from Q to
Uieq A: satisfying the condition that f(i) € A; for each i € Q. The
existence of such functions is guaranteed by a fundamental axiom of set
theory, known as the Axiom of Choice. A certain amount of controversy
surrounds this axiom, and there are mathematicians who prefer to make as
little use of it as possible. However, we will need it constantly throughout
this book, and so will always assume that it holds.

In the foregoing construction we did not assume that the sets A, were
necessarily distinct. Indeed, it may very well happen that there exists a
set A suchthat A; = A forall i € Q. In that case, we see that [],., A
is just A?. If the set Q is finite, say Q = {1,...,n}, then we write
A" instead of A®. Thus, A" is just the set of all ordered n-tuples
(ai,...,a,) of elements of A.

We use the following standard notation for some cominon sets of numbers

N the set of all nonnegative integers
Z  the set of all integers

Q@ the set of all rational numbers

R the set of all real numbers

C the set of all complex numbers

Other notion is introduced throughout the text, as is appropriate. See the
Summary of Notation at the end of the book.






Fields

The way of mathematical thought is twofold: the mathematician first pro-
ceeds inductively from the particular to the general and then deductively
from the general to the particular. Moreover, throughout its development,
mathematics has shown two aspects — the conceptual and the computa-
tional - the symphonic interleaving of which forms one of the major aspects
of the subject’s aesthetic.

Let us therefore begin with the first mathematical structure: numbers.
By the Hellenistic times, mathematicians distinguished between two types
of numbers: the rational numbers, namely those which could be written
in the form % for some integer m and some nonnegative integer n, and
those numbers representing the geometric magnitude of segments of the
line, which today we call real numbers and which, in decimal notation, are
written in the form m.kikoks... where m is an integer and the k; are
digits. The fact that the set @ of rational numbers is not equal to the set
R of real numbers was already noticed by the followers of the mathemati-
cian/mystic Pythagoras. On both sets of numbers we define operations
of addition and multiplication which satisfy certain rules of manipulation.
Isolating these rules as part of a formal system was a task first taken on in
earnest by nineteenth-century British and German mathematicians. From
their studies evolved the notion of a field, which will be basic to our consid-
erations. However, since fields are not our primary object of study, we will
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6 2. Fields

delve only minimally into this fascinating notion. A serious consideration
of field theory must be deferred to an advanced course in abstract algebra.!

A nonempty set ' together with two functions FxF — F, respectively
called addition (as usual, denoted by +) and multiplication (as usual,
denoted by - or by concatenation}, is a field if the following conditions
are satisfied:

(1) (associativity of addition and multiplication): a4 (b+¢) =
(a+b)+c and a(be) = (ab)e for all a,b,c€ F.

(2) (commutativity of addition and multiplication): a+b=b+a
and ab = ba for all a,b € F.

(3) (distributivity of multiplication over addition): a(b+ ¢) =
ab+ ac for all a,b,c € F.

(4) (existence of identity elements for addition and multiplica-
tion): There exist distinct elements of F, which we will denote by 0
and 1 respectively, satisfying a+0=a and al =a forall a€ F.

(5) (existence of additive inverses): For each a € F there exists
an element of F, which we will denote by —a, satisfying a+ (—a) = 0.

(6) (existence of multiplicative inverses): For each 0 # a € F
there exists an element of F, which we will denote by a~!, satisfying
ala=1

Note that we did not assume that the elements —a and a~' are unique,
though we will soon prove that in fact they are. If ¢ and b are elements
of a field F, we will follow the usual conventions by writing a —b instead
of a+(—b) and ¢ instead of ab~'. Moreover, if 0 #a € F and if n
is a positive integer, then na denotes the suma+...+a (n summands)
and a" denotes the product a-...-a (n factors). If n is a negative
integer, then na denotes (—n)(—a) and a™ denotes (a~!)~". Finally,
if m=0 then na denotes the field element 0 and " denotes the field
element 1. For 0 =a € F, we define na =0 for all integers n and

The development of the abstract theory of fields is generally credited to the 19th-
century German mathematician Heinrich Weber, based on earlier work by the
German mathematicians Richard Dedekind and Leopold Kronecker. Another
19th-century mathematician, the British Augustus De Morgan, was the first to
isolate the importance of such properties as associativity, distributivity, and so forth.
The final axioms of a field are due to the 20th-century German mathematician Ernst
Steinitz.



2. Fields 7

a”™ = 0 for all positive integers n. The symbol 0* is not defined for
k<0.

As an immediate consequence of the associativity and commutativity of
addition, we see that the sum of any list a;....,a, of elements of a field
F is the same, no matter in which order we add them. We can therefore
unambiguously write a; + ...+ a,. This sum is also often denoted by
> izqai. Similarly, the product of these elements is the same, no matter
in which order we multiply them. We can therefore unambiguously write
ay-...-an. This product is also often denoted by [];_, a;. Also, a simple
inductive argument shows that multiplication distributes over arbitrary
sums: if a € F and b,,...b, isalist of elements of F then a(} ], b;) =

3oisy abi.

We easily see that Q and R, with the usual addition and multiplication,
are fields.

A subset G ofa field F is a subfield if and only if it contains 0 and 1,
is closed under addition and multiplication, and contains the additive and
multiplicative inverses of all of its nonzero elements. Thus, for example,
Q is a subfield of R. The intersection of a collection of subfields of a field
F is again a subfield of F.

We now want to look at several additional important examples of fields.

Example: Let C =R? and define operations of addition and multi-
plication on C by setting (a,b)+(c,d) = (a+¢,b+d) and (a,b)-(c,d) =
(ac—bd,ad+be). These operations define the structure of a field on C, in
which the identity element for addition is (0,0), the identity element for
multiplication is (1,0), the additive inverse of (a,b) is (—a, —b), and

-1 a —b
(a,6)7" = (a2+b2’a2+b2)

for all (0,0) # (a,b). This field is called the field of complex numbers.
The set of all elements of C of the form (a,0) forms a subfield of C,
which we normally identify with R and therefore it is standard to consider
R as a subfield of C. In particular, we write @ instead of (a,0) for
any real number a. The element (0,1) of C is denoted by ¢. This
element satisfies the condition that i2 = (—1,0) and so it is often written
as y/—1. We also note that any element (a,b) of C can be written as
(a,0)+b(0,1) = a+ bi, and, indeed, that is the way complex numbers are
usually written and how we will denote them from now on. If 2z = a+ bi,
then a is the real part of z, which is often denoted by Re(z), while
bt is the imaginary part of z, which is often denoted by Im(z). The



