

低压电气装置的

设计安装和检验

中国航空规划建设发展有限公司 王厚余 编著

- 著名电气专家力作
- 深入浅出阐述建筑电气国际标准内涵及其应用要点
- 简洁实用介绍低压电气安全理论及事故防范措施
- **低压电气工作者必备安全用书**

低压电气装置的

设计安装和检验

中国航空规划建设发展有限公司 王厚余 编著

内 容 提 要

为推动我国建筑电气技术的发展,本书第一、二版依据 IEC/TC 64 和发达国家电气标准对低压电气装置的安全和功能要求进行了介绍。同时,还对国际电工标准有关低压电气装置的检验要求和一些电气危险性大的特殊场所电气事故的防范措施分别进行了阐述,以适应低压电气装置减灾、正常运作和我国加入世贸组织后的低压电气装置设计、安装、检验工作与国际电工标准接轨的需要。

本书第三版就是在第二版的基础上,按相关新版的国际电工标准的修改和增加的内容,对第二版内容进行了补充和修改,如补充了导体截面选择中的经济电流密度、短路防护电器的安装位置、游艇和轮船的岸电供电装置等内容,纠正了IT系统不宜引出中性线原因的不当说明等。

本书可供低压电气装置设计、安装、检验和管理人员以及供电部门用电管理人员使用,还可供专业院校师生参考以及设计人员准备资质考试使用。

图书在版编目 (CIP) 数据

低压电气装置的设计安装和检验/王厚余编著. —3 版. 北京:中国电力出版社,2012.5 ISBN 978-7-5123-2987-4

I. ①低··· II. ①王··· III. ①低压电器-电气设备-基本知识 IV. ①TM52

中国版本图书馆 CIP 数据核字(2012)第 083186 号

中国电力出版社出版、发行

(北京市东城区北京站西街 19 号 100005 http://www.cepp.com.cn) 北京雁林吉兆印刷有限公司印刷 各地新华书店经售

*

2003年6月第一版

2012 年 7 月第三版 2012 年 7 月北京第九次印刷 710 毫米×980 毫米 16 开本 18 印张 292 千字 印数 30001—33000 册 定价 **35.00** 元

敬告读者

本书封面贴有防伪标签, 刮开涂层可查询真伪 本书如有印装质量问题, 我社发行部负责退换 版 权 专 有 翻 印 必 究 蒙读者错爱,《低压电气装置的设计安装和检验》(第二版)发行后不 胫而走。本书自出版后已重印八次,累计印数达三万册。不少读者反映, 反复阅读后明白了 IEC/TC 64 建筑电气国际标准规定的基本原理,纠正 了不少设计安装中的不当之处。这些过褒之词对作者是鼓励,也是鞭策。 作者对 IEC/TC 64 标准理解不深,第二版中存在不少立论不够严谨、陈 述不尽清晰之处,对此作者深感不安和歉疚,承中国电力出版社之请,建 议作者在第二版的基础上再推出第三版。这对作者是个弥续前衍的机会。 虽然水平不高、困难不少,但也勉为其难欣然从命。

在第三版中除对第二版中各章节陈述不够清晰充实处作些补充叙述和说明外,对诸如以下一些内容也作了些补充和修改:

- 一一介绍了新版 IEC 标准的基本防护、故障防护和附加防护三种防护措施的含义。
 - ——区分了电气分隔中的保护分隔和简单分隔。
 - ——概述了接地系统选用中的通常要求。
 - ——纠正了 IT 系统不宜引出中性线原因的不当说明。
 - ——补充了 IEC 标准对过载防护公式规定的原由。
- ——说明了 IEC 标准对经济电流密度只提理念,不作定量规定的原由。
 - ——分析了我国多处出现的"电楼"现象和等电位联结的关系。
- ——例述了多电源系统中性线多点接地产生的杂散电流、杂散电磁场的危害。
 - ——例述了功能性电源转换开关的设置要求简单可靠的重要性。
 - ——增加了游艇、轮船岸电供电装置的接地要求。

IEC/TC 64 标准在我国的推广已逐渐深入,但还不尽如人意。俄罗斯早已摒弃苏联时代的建筑电气规范、导则,其低压电气装置部分已采用IEC 标准。而我国的规范和资料中则仍不时见到苏联 20 世纪五六十年代过时观念的痕迹,影响建筑电气水平的提高。有的同行认为 IEC/TC 64 标准要求高,造成浪费,不能照搬只能靠拢。这一不妥看法在一定程度上妨碍了 IEC/TC 64 标准在我国的推广。要知 IEC/TC 64 标准在国际上并非高要求而是保证建筑电气安全和功能的最低要求。发达国家有关规范的一些规定往往高于它。在我国建筑电气中造成浪费而又不能保证安全和功能的做法,恰恰是源于违反 IEC/TC 64 标准的我国的一些不当规定。第三版中结合一些实际应用说明这一状况。

作者虽从事 IEC/TC 64 归口工作逾 30 年,但限于水平,第三版内仍 然难免存有不妥之处,希同行不吝批评指正。

2012. 4

第二版前言

《低压电气装置的设计安装和检验》一书,自 2003 年出版后深受读者的欢迎,一再重印。不少单位的电气技术人员人手一册,视它为了解建筑电气 IEC/TC 64 国际标准的简明读物。不少同行通过电函与笔者就书中所论述的问题进行了深层次的讨论。也有不少同行对书中的不足提出了中肯的意见,建议予以改进和充实。

读者对这本书的这些反映,说明了我国建筑电气同行希望了解 IEC/TC 64 标准,提高我国建筑电气水平的迫切心情,也说明了在我国宣传和推广 IEC/TC 64 标准的工作做得还不尽如人意。笔者参与宣传推广该标准的归口工作已有二十多年,在感谢同行热心支持的同时也为此深感歉疚。

限于笔者水平,本书第一版确存在一些有欠准确和严谨处,有待修正。另外,随着建筑电气技术的不断发展,IEC/TC 64 标准也在不断修改和补充,本书也需随之跟踪。为此,笔者应中国电力出版社之约,在第一版的基础上进行了修改和补充,推出了本书的第二版,以飨读者。

本书第二版在第一版的基础上主要作如下修改和补充:

- 一一修正了一些概念上的偏差。例如在带电导体分类中,第一版错误 地依据美国标准将两相三线系统归为单相三线系统,又如对无等电位联结 作用的环境内局部 TT 系统的理解过于简单化,未说清其应用的前提等。
- 一补充说明了一些电气安全的基本要求,例如说明在一建筑物电气系统中,为消除杂散电流危害,中性线一点接地的复杂性。
- ——IEC 标准对电气装置的系统接地、保护接地以及信息接地的接地方式和接地电阻值要求不同于我国一些接地电阻值的规定,论证 IEC 规定的科学性和纠正我国建筑电气一些不妥概念的必要性。
 - ——阐叙有关"接地"的广义的内涵,分析接大地和等电位联结的相

互关系,说明其共同点和不同点。

- ——跟踪 IEC/TC 64 标准对防雷电冲击过电压范围的扩大,增加了防建筑物直接落雷和近处落雷时 SPD 的选用和安装要求,并对保证 SPD 安全失效措施等内容进行了补充。
- ——区分了供电电能质量和用电电能质量,在信息技术设备的抗干扰措施内补充了在建筑电气设计安装中避免引发电能质量问题的措施,例如"地"电位的均等、过大共模电压和过大 PE 线电流的抑制和消除等。
- ——阐述了电源转换开关极数确定的复杂性,举例分析了 IEC 不简单规定其极数的缘由,阐述了确定电源转换开关极数的一些基本要求。
 - ——增加了特低电压照明装置的电气安全要求。

与我国其他电气行业相比, 也与建筑电气国际水平相比, 我国建筑电 气行业技术基础薄弱,差距较大。由于历史上的原因,在很长一段时期内 我国闭关自守,对外缺少沟通交流,建筑电气一些基本概念陈旧过时,难 以适应用电技术发展的需要,以致电气事故频频发生,有些电气设备不能 正常发挥功能。我国建筑电气规范政出多门, 互相矛盾, 又不与国际标准 接轨,以致技术水平相对落后。一个明显的标志是我国建筑电气规范在国 外以至在回归祖国多年的香港至今仍未得到认可和采用,我国在国际建筑 市场的激烈竞争中也往往为此屈居下风,这与我国的大国地位很不相称。 20 世纪 70 年代 IEC/TC 64《建筑物电气装置》国际标准开始发布,一些 发达国家纷纷按该标准的结构和规定修改本国建筑电气规范以消除技术上 的壁垒,争取在国际建筑市场竞争中的有利地位,我国也应循此涂径提高 我国建筑电气规范水平,使它具有应有的权威性。但仅做到这点还是不够 的,还需建立有效的机制来保证规范的正确执行,减少电气事故的发生。 在发达国家如果建筑物电气装置不符合安全要求,供电公司不予接电,保 险公司也不予保险,起到了有效的把关和制约作用。但在我国由于用电安 全技术落后以及其他一些复杂原因,实现与这些部门和单位间的合作是很 困难的,我国的电气减灾工作无疑是项任重道远长期艰巨的任务。

提高我国建筑电气安全水平有赖我广大建筑电气同行的共同努力。千

里之行始于足下,当务之急是在我国认真宣传推广 IEC/TC 64 标准。笔者作为该标准归口委员会的一员,不揣浅陋撰写又修订再版本书,只冀抛砖引玉,与我建筑电气同行切磋探讨 IEC/TC 64 标准的制订原理,为推动我国建筑电气技术进步,减少我国电气灾害尽绵薄之力。限于水平谬误难免,希我同行一如既往,不吝批评指正。

中国航空工业规划设计研究院 王厚余 2006年11月

目 录

14	
FII	言

第二版前言

第一章 申	e流通过人体时的效应 ······	• 1
第一节	有关电气安全的几个交流电流效应阈值	• 1
第二节	不同环境条件下的不同交流接触电压限值	• 3
第三节	交流电流通过人体的效应与防护电器选用的关系	• 4
第四节	直流电流通过人体的效应	• 4
第二章 酉	记电系统的接地 ······	• 6
第一节	配电系统的两个接地	• 6
第二节	系统接地的作用 ·····	• 7
第三节	系统接地的实施 ·····	• 8
第四节	保护接地的作用	10
第五节	$10/0.4 \mathrm{kV}$ 配电变电站内的两个接地 ······	10
第三章 带	带电导体系统和接地系统的分类 ·······	12
第一节	带电导体系统分类	12
第二节	接地系统分类	14
第三节	现时我国有关接地系统需纠正和斟酌的一些问题	17
第四节	对各类接地系统的评述及其采用	19
第四章 直	直接接触电击的防护 ·······	25
第一节	带电部分的绝缘覆盖	25
第二节	遮栏或外护物	25
第三节	阳挡物	26

	第四节	带电部分置于伸臂范围以外的布置		26
	第五节	装用 30mA RCD 的附加防护 ·····	••••••••••	27
	第五章 间	可接接触电击防护与电气设备按防间接接触电击 ;	措施的分类 …	28
	第一节	0 类设备		29
	第二节	[类设备		29
	第三节	Ⅱ类设备	••••••	30
	第四节	Ⅲ类设备	••••••	30
	第五节	电气装置和电气设备在防电击措施上的配合	•••••••	31
	第六章 用	用自动切断电源和连接 PE 线接地的防间接接触电	3击措施·······	32
	第一节	自动切断电源措施的几个基本要求		32
	第二节	总等电位联结		33
	第三节	辅助等电位联结和局部等电位联结		36
	第四节	TN 系统内自动切断电源的防电击措施 ·········		38
	第五节	TT 系统内自动切断电源的防电击措施 ········		50
	第六节	IT 系统内自动切断电源的防电击措施 ······		54
>>	第七章 不	下用自动切断电源和连接 PE 线接地的防间接接角	虫电击措施	62
	第一节	采用Ⅱ类设备	••••••	62
	第二节	设置绝缘场所	••••••	62
	第三节	采用保护分隔	•••••••••	63
	第四节	设置不接地的局部等电位联结和采用特低电压供	电	64
>>	第八章 过	过电流及过电流防护电器 ······		65
	第一节	两种不同后果的过电流 ·····		65
	第二节	断路器和熔断器的合理应用		66
	第三节	中性线的过电流防护	•••••••	67
	第九章 过	过载防护		69
	第一节	过载防护应满足的条件		69
	第二节	并联导体的过载防护		72
	第三节	谐波电流引起的回路过载及其防护		73

第四节	过载防护电器的安装位置	• 79
第五节	过载防护电器的免装	• 80
第六节	导体截面积选择中的经济电流密度	• 81
第十章 短	显路防护	• 82
第一节	短路防护应满足的条件	• 82
第二节	干线短路防护电器能保护的分支回路的长度范围	• 84
第三节	短路防护越级跳闸的防范	• 84
第四节	短路防护电器的安装位置	• 86
第五节	短路防护电器的免装	• 86
第十一章	电气火灾的防范	• 88
第一节	短路起火	• 88
第二节	连接不良起火	• 99
第三节	电气装置布置不当起火	102
第四节	防电气火灾蔓延及封堵措施	103
第十二章	暂时工频过电压的防护 ······	105
第一节	10kV 不接地系统接地故障引起的过电压 ······	105
第二节	10kV 经小电阻接地系统内接地故障引起的过电压 ······	106
第三节	TN 系统内的人身电击危险·····	108
第四节	防范 TN 系统内人身电击事故的措施	109
第五节	TT 系统内的绝缘击穿危险·····	110
第六节	防范 TT 系统内绝缘击穿事故的措施 ·····	111
第七节	变电站与低压电气装置共处于同一建筑物内时该建筑物内不存	
	在暂时过电压引起的电气事故危险	113
第八节	10kV 变电站高压侧接地故障过电压危害防范的简要概括 ·····	114
第十三章	瞬态冲击过电压的防护 ······	116
第一节	电气设备的额定耐冲击电压值及其分级	117
第二节	防范瞬态冲击过电压的多种措施	119
第三节	SPD 的选用和安装 ·····	121
第四节	SPD与 RCD 间安装位置的协调 ······	129

第五节	瞬态操作过电压的防范及暂时短路过电压值的确定	130
第十四章	用电电能质量和信息技术设备 (ITE) 的抗干扰	133
第一节	一般用电设备的用电电能质量问题	133
第二节	ITE 的用电电能质量问题	134
第三节	电压扰动	135
第四节	减少电压扰动的措施	136
第五节	ITE 的接地和等电位联结 ······	139
第六节	IEC 标准推荐的 ITE 信号接地方式的三种范例······	145
第七节	电能净化设备的应用	147
第十五章	"断零"烧坏设备事故的防范 ······	150
第一节	"断零"的危害	150
第二节	"断零"烧坏设备事故的防范	152
第十六章	电气隔离和四极开关的应用 ······	155
第一节	三根相线断电后中性线带电压的原因	155
第二节	中性线上增加开关触头易招致"断零"烧设备的危险	156
第三节	单电源不同类型接地系统对开关极数的不同要求	157
第四节	配电变电站内总开关和母联开关不需为	
	电气检修装用四极开关	159
第五节	末端电源转换开关防杂散电流对开关极数的要求	160
第六节	对四极开关作用的一些误解	163
第七节	对隔离电器的性能要求	164
第十七章	IT 系统在应急电源 (EPS) 中的应用	166
第一节	备用电源和应急电源	166
第二节	应急电源中 IT 系统的应用 ·····	167
第十八章	隔离变压器和特低电压的应用 ······	170
第一节	隔离变压器在防间接接触电击中的应用	170
第二节	特低电压在防间接接触电击和直接接触电击中的应用	172
第十九章	剩余电流动作保护器 (RCD) 的应用 ······	174
第一节	RCD 作用的有限性 ······	175

	第二节	电压扰动对 RCD 动作可靠性的影响	177
	第三节	RCD 应与接地或等电位联结结合应用 ·····	178
	第四节	固定式设备的电源回路上不一定要装用 RCD	179
	第五节	$I_{\Delta n}$ 值的确定·····	180
	第六节	In 值的确定 ·····	181
	第七节	RCD 的选择性动作 ·····	181
	第八节	RCD 的接线·····	182
	第九节	RCD 极数的确定 ·····	183
	第十节	电源端大额定电流 RCD 的设置 ·····	184
>>	第二十章	接地装置的设置 ······	188
	第一节	接地装置的组成	189
	第二节	对接地装置的设置要求	189
	第二十一章	f PE 线、PEN 线和等电位联结线的选用和敷设要求 ········	193
	第一节	PE 线和 PEN 线的最小允许截面积	193
	第二节	通过大正常泄漏电流的 PE 线提高机械强度措施	195
	第三节	PE 线的代用体 · · · · · · · · · · · · · · · · · · ·	196
	第四节	PE 线和 PEN 线的敷设要求 ······	196
	第五节	联结线截面积的确定	197
	第六节	低压电气装置工频等电位联结实施中一些具体问题的探讨	199
	第七节	地面等电位对地下金属部分密度的要求	201
	第八节	中性线、PE线、PEN线和联结线的作用和色标 ······	201
>>	第二十二章	ā 低压电气装置的检验······	203
	第一节	视检	203
	第二节	测试	204
	第三节	周期性的视检和测试	212
	第二十三章	5 特殊场所和特殊电气装置的电气安全要求 ······	214
	第一节	浴室	215
	第二节	游泳池	219

	第三节	喷水池	222
	第四节	桑拿浴室	224
	第五节	施工场地 ·····	225
:	第六节	农畜房屋	229
:	第七节	狭窄的导电场所	231
	第八节	有大量信息技术设备的电气装置	232
:	第九节	医院 ·····	235
	第十节	展览会、陈列厅和展摊	244
	第十一节	家具	246
	第十二节	户外照明装置	247
	第十三节	特低电压照明装置	249
	第十四节	游艇和轮船的岸电供电装置	251
附录A	名词说	胡	256
附录 B	IP 防扣	^à 等级的编码分级 ······	265
附录C	IEC 对	某些外界环境影响条件的分类 ······	267
附录 D	IEC/T	C 64 标准和转化为我国国家标准的目录······	270

电流通过人体时的效应

当人体同时触及不同电位的导电部分时,电位差使电流流经人体,称为电接触。视接触电流的大小和持续时间的长短,它对人体有不同的效应。电流小时于人体无害,用于诊断和治病的某些医疗电气设备,接触人体时通过微量电流还能治病救人,对人体有益,这种电接触被称作微电接触。如通过人体的电流较大,持续时间过长,则可使人受到伤害甚至死亡,这种电接触被称作电击。电击危及人身安全,因此电气专业人员应了解电流通过人体的效应,才能采取正确有效的防范措施,避免发生电击事故。

第一节 有关电气安全的几个交流电流效应阈值

IEC 60479《电流通过人体时的效应》根据测试结果,规定电压不大于1000V、频率不大于100Hz的交流电流通过人体时有以下几个主要的效应阈值:

- (1) 感觉阈值——人体能感觉出的最小电流值,一般为 0.5mA,此值与电流通过的持续时间长短无关。
- (2) 摆脱阈值——当人用手持握带电导体时,如流过手掌心肌肉的电流超过此值,手掌心肌肉的反应将是不依人的意识摆脱带电导体而是紧握带电导体,从而使电流得以持续通过人体。导致此效应的最小电流称作摆脱阈值。此值因人而异,IEC 标准对成年男性取其平均值为 10mA。如不能摆脱带电导体,在较大电流长时间作用下人体将遭受伤害甚至死亡。人体其他部位接触带电导体时可立即摆脱带电导体,不存在电击致死的危险,但可能引起二次伤害,如因电击自高处坠地而导致伤亡。
- (3) 心室纤维性颤动阈值——电流通过人体时引起的心室纤维性颤动是电击致死的最常见原因。引起心室纤维性颤动的最小电流称作心室纤维性颤动(简称心室纤颤)阈值。此阈值与通电时间长短有关,也与人体条件、心脏功能状况、

电流在人体内通过的路径(通常为两手间或手、足间的路径)等有关,但与人的性别、肤色、种族无关。IEC 60479 按测试得出的导致心室纤颤的通过人体的 $15\sim100$ Hz交流电流 I_b 与通电时间 t 的关系曲线如图 1-1 曲线 c 所示。

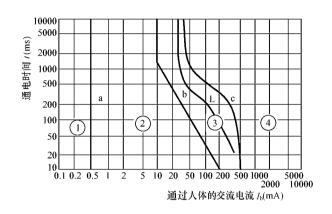


图 1-1 交流电流通过人体时的效应

图 1-1 中各区域的含义:

- ①区——直线 a 左侧的区域,通常无感觉;
- ②区——直线 a 与折线 b 之间的区域,有电的感觉,但无病理反应;
- ③区——折线 b 至曲线 c 之间的区域,通常无器官损伤,可能出现肌肉收缩、呼吸困难、心房纤颤、无心室纤颤的短暂心脏停跳,此等病理反应随电流和时间的增大而加剧;
- ④区——曲线 c 右侧的区域,除出现③区的病理反应外,还出现导致死亡的心室纤颤以及心脏停跳、呼吸停止、严重烧伤等反应,它随电流和时间的增大而加剧。

从图 1-1 可知,如电击电流和其持续时间在④区内,人体就有死亡危险。但在制定防电击措施时,尚需为不同于实验室条件的现场其他一些不利条件留出一些裕量,通常以③区内离曲线 c 一段距离的曲线 L 作为人体是否安全的界限,如图 1-1 所示。从曲线 L 可知,只要 I_b 小于 30mA,人体就不致因发生心室纤颤而电击致死。据此国际上将防电击的高灵敏度剩余电流动作保护器(residual current operated protective device,RCD)的额定动作电流值取为 30mA。

第二节 不同环境条件下的不同交流接触电压限值

人体接触电流 I_b 因施加于人体阻抗 Z_t 上的接触电压 U_t 而产生。接触电压 越大, Z_t 越小, I_b 越大。在设计电气装置时计算 I_b 很困难,而计算预期接触电压 U_t 比较方便。为此 IEC 标准又提出在干燥和潮湿环境条件下相应的预期接触电压和通电时间的关系曲线($U_t \sim t$ 曲线)L1 和 L2,如图 1-2 所示。应该说明,

图 1-2 曲线中的 L1 和 L2 非自图 1-1 曲线 L按 欧姆定理推算求得,因人体阻抗是随接触电压 的增大而减小的,不是固定值,故此曲线也系 测试求得。还需说明,在防电击的计算中求出 的是预期接触电压 U_t 。对于从手到足的电击电 流通路而言,预期接触电压是施加于人体及鞋 袜、地面等阻抗之和(后两者之和约200~1000 Ω)上的电压,故人体实际接触电压常小于预期接触电压 U_t 。但在诸如赤足和金属导电地面之类的情况下,鞋袜和地面电阻可不 计,这时实际接触电压即为预期接触电压。故 预期接触电压为最大的接触电压。为确保电气 安全和简化计算,在实际应用中接触电压都采用预期接触电压 U_t 。

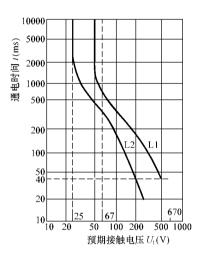


图 1-2 干燥和潮湿条件下预期接触电压 U_t 和允许最大持续时间t的关系曲线

由图 1-2 可知,在干燥条件下当 $U_{\rm t}$ 不大于 50V 时,人体接触此电压不致发生心室纤颤致死,所以在干燥环境条件下将预期接触电压限值 $U_{\rm L}$ 取为 50V。据此,IEC 标准将干燥环境条件下用以防电击的特低电压设备的额定电压定为 48V (我国现仍沿用过去的 36V,致使用电器具的技术经济性能较差)。在潮湿环境条件下,如在施工场地、农场以及户外照明装置等处,由于下雨淋湿,人体皮肤阻抗降低,大于 25V 的 $U_{\rm t}$ 即可导致引起心室纤颤的 30mA 以上的接触电流 $I_{\rm b}$,据此 IEC 标准将潮湿环境条件下的 $U_{\rm L}$ 值规定为 25V,而特低电压设备的额定电压则规定为 24V。在水下或特别潮湿环境条件下,如在浴室或游泳池等场所内,由于皮肤湿透,其阻抗大幅下降,人体在水下时接触面积更大,接触电流通道更