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Preface

In recent years, I have been teaching a junior-senior-level course on the classi-
cal geometries. This book has grown out of that teaching experience. I assume
only high-school geometry and some abstract algebra. The course begins in
Chapter 1 with a critical examination of Euclid's Elements. Students are expected
to read concurrently Books I-1V of Euclid’s text, which must be obtained sepa-
rately. The remainder of the book is an exploration of questions that arise natu-
rally from this reading, together with their modern answers. To shore up the
foundations we use Hilbert's axioms. The Cartesian plane over a field provides
an analytic model of the theory, and conversely, we see that one can introduce
coordinates into an abstract geometry. The theory of area is analyzed by cutting
figures into triangles. The algebra of field extensions provides a method for
deciding which geometrical constructions are possible. The investigation of the
parallel postulate leads to the various non-Euclidean geometries. And in the last
chapter we provide what is missing from Euclid’s treatment of the five Platonic
solids in Book XIII of the Elements.

For a one-semester course such as I teach, Chapters 1 and 2 form the core
material, which takes six to eight weeks. Then, depending on the taste of the in-
structor, one can follow a more geometric path by going directly to non-Euclidean
geometry in Chapter 7, or a more algebraic one, exploring the relation between
geometric constructions and field extensions, by doing Chapters 3, 4, and 6. For
me, one of the most interesting topics is the introduction of coordinates into an
abstractly given geometry, which is done for a Euclidean plane in Section 21,
and for a hyperbolic plane in Section 41.

Throughout this book, I have attempted to choose topics that are accessible
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viil Preface

to undergraduates and that are interesting in their own right. The exercises are
meant to be challenging, to stimulate a sense of curiosity and discovery in the
student. I purposely do not indicate their difficulty, which varies widely.

I hope this material will become familiar to every student of mathematics,
and in particular to those who will be future teachers.

I owe thanks to Marvin Greenberg for reading and commenting on large
portions of the text, to Hendrik Lenstra for always having an answer to my
questions, and to Victor Pambuccian for valuable references to the literature.
Thanks to Faye Yeager for her patient typing and retyping of the manuscript.
And special thanks to my wife, Edie, for her continual loving support.

Of all the works of antiquity which have
been transmitted to the present times, none are
more universally and deservedly esteemed than
the Elements of Geometry which go under the
name of Euclid. In many other branches of
science the moderns have far surpassed their
masters; but, after a lapse of more than two
thousand years, this performance still maintains
its original preeminence, and has even acquired
additonal celebrity from the fruitless attempts
which have been made to establish a different
system.

- from the preface to
Bonnycastle's Euclid
London (1798)
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I have not found anything in Lobatchevski's
work that is new to me, but the development is
made in a different way from the way I had
started and to be sure masterfully done by Lo-
batchevski in the pure spirit of geometry.

- letter from Gauss to Schumacher (1846)
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Introduction

little after the time of Plato, but before Archimedes, in
ancient Greece, a man named Euclid wrote the Ele-
ments, gathering and improving the work of his pre-
decessors Pythagoras, Theaetetus, and Eudoxus into
one magnificent edifice. This book soon became the
standard for geometry in the classical world. With the
decline of the great civilizations of Athens and Rome, it
moved eastward to the center of Arabic learning in the
court of the caliphs at Baghdad.

In the late Middle Ages it was translated from Arabic into Latin, and since
the Renaissance it not only has been the most widely used textbook in the
world, but has had an influence as a model of scientific thought that extends
way beyond the confines of geometry. As Billingsley said in his preface to the
first English translation (1570), “Without the diligent studie of Euclides Ele-
mentes, it is impossible to attaine unto the perfecte knowledge of Geometrie, and
consequently of any of the other Mathematical Sciences.” Even today, though
few schools use the original text of Euclid, the content of a typical high-school
geometry course is the same as what Euclid taught more than two thousand
three hundred years ago.

In this book we will take Euclid's Elements as the starting point for a study of
geometry from a modern mathematical perspective.

To begin, we will become familiar with the content of Euclid's work, at least
those parts that deal with geometry (Books I-1V, VI, and XI-XIII). Here we find
theorems that should be familiar to anyone who has had a course of high-school
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2 Introduction

geometry, such as the fact (1.4) that two triangles are congruent if they have two
sides and the included angle equal, or the fact (II1.21) that a given arc of a circle
subtends the same angle at any point of the circle from which it is seen.
(Throughout this book, references such as (1.4) or (I1I1.21) refer to the corre-
sponding Book and Proposition number in Euclid’s Elements.)

Many of Euclid’s propositions pose construction problems, such as (1.1), to
construct an equilateral triangle, or (IV.11), to construct a regular pentagon
inscribed in a circle. Euclid means to construct the required figure using only
the ruler, which can draw a straight line through two points, and the compass,
which can draw a circle with given center and given radius. These ruler and
compass constructions are often taught in high-school geometry. Note that
Euclid casts these problems in the form of constructions, whereas a modern
mathematician would be more likely to speak of proving the existence of the
required figure.

At a second level, we will study the logical structure of Euclid’s presentation.
Euclid’'s Elements has been regarded for more than two thousand years as the
prime example of the axiomatic method. Starting from a small number of
self-evident truths, called postulates, or common notions, he deduces all the
succeeding results by purely logical reasoning. Euclid thus begins with the sim-
plest assumptions, such as Postulate 1, to draw a line through any two given
points, or Postulate 3, to draw a circle with given center and radius. He then
proceeds step by step to the culmination of the work in Book XIII, where he
gives the construction of the five regular solids: the tetrahedron, the cube, the
octahedron, the icosahedron, and the dodecahedron.

Upon closer reading, we find that Euclid does not adhere to the strict axiom-
atic method as closely as one might hope. Certain steps in certain proofs depend
on assumptions that, however reasonable or intuitively clear they may seem,
cannot be justified on the basis of the stated postulates and common notions. So,
for example, the fact that the two circles in the proof of (I.1) will actually meet
at some point seems obvious, but is not proved. The method of superposition
used in the proof of (1.4), which allows one to move the triangle ABC so that it
lies on top of the triangle DEF, cannot be justified from the axioms. Also, various
assumptions about the relative position of figures in the plane, such as which
point lies between the others, or which ray lies in the interior of a given angle,
are used without any previous clarification of what such notions should mean.

These lapses in Euclid's logic lead us to the task of disengaging those implicit
assumptions that are used in his arguments and providing a new set of axioms
from which we can develop geometry according to modern standards of rigor.
The logical foundations of geometry were widely studied in the late nineteenth
century, which led to a set of axioms proposed by Hilbert in his lectures on the
foundations of geometry in 1899. We will examine Hilbert's axioms, and we will
see how these axioms can be used to build a solid base from which to develop
Euclid's geometry pretty much according to the logical plan that he first laid out.



