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COMPUTATIONAL COMPLEXITY

This beginning graduate textbook describes both recent achievements and
classical results of computational complexity theory. Requiring essentially
no background apart from mathematical maturity, the book can be used
as a reference for self-study for anyone interested in complexity, including
physicists, mathematicians, and other scientists, as well as a textbook for
a variety of courses and seminars. More than 300 exercises are included
with a selected hint set.

The book starts with a broad introduction to the field and progresses
to advanced results. Contents include definition of Turing machines and
basic time and space complexity classes, probabilistic algorithms, inter-
active proofs, cryptography, quantum computation, lower bounds for
concrete computational models (decision trees, communication complex-
ity, constant depth, algebraic and monotone circuits, proof complexity),
average-case complexity and hardness amplification, derandomization and
pseudorandom constructions, and the PCP Theorem.

Sanjeev Arora is a professor in the department of computer science at
Princeton University. He has done foundational work on probabilistically
checkable proofs and approximability of NP-hard problems. He is the
founding director of the Center for Computational Intractability, which is
funded by the National Science Foundation.

Boaz Barak is an assistant professor in the department of computer science
at Princeton University. He has done foundational work in computational
complexity and cryptography, especially in developing “non-blackbox”
techniques.



About this book

Computational complexity theory has developed rapidly in the past three decades. The
list of surprising and fundamental results proved since 1990 alone could fill a book: These
include new probabilistic definitions of classical complexity classes (IP = PSPACE and
the PCP theorems) and their implications for the field of approximation algorithms,
Shor’s algorithm to factor integers using a quantum computer, an understanding of
why current approaches to the famous P versus NP will not be successful, a theory
of derandomization and pseudorandomness based upon computational hardness, and
beautiful constructions of pseudorandom objects such as extractors and expanders.

This book aims to describe such recent achievements of complexity theory in the
context of more classical results. It is intended to serve both as a textbook and as
a reference for self-study. This means it must simultaneously cater to many audi-
ences, and it is carefully designed with that goal in mind. We assume essentially
no computational background and very minimal mathematical background, which
we review in Appendix A. We have also provided a Web site for this book at
http://www.cs.princeton.edu/theory/complexity with related auxiliary
material, including detailed teaching plans for courses based on this book, a draft of
all the book’s chapters, and links to other online resources covering related topics.
Throughout the book we explain the context in which a certain notion is useful, and
why things are defined in a certain way. We alsoillustrate key definitions with examples.
To keep the text flowing, we have tried to minimize bibliographic references, except
when results have acquired standard names in the literature, or when we felt that pro-
viding some history on a particular result serves to illustrate its motivation or context.
(Every chapter has a notes section that contains a fuller, though still brief, treatment of
the relevant works.) When faced with a choice, we preferred to use simpler definitions
and proofs over showing the most general or most optimized result.

The book is divided into three parts:

e Part I: Basic complexity classes. This part provides a broad introduction to the field.
Starting from the definition of Turing machines and the basic notions of computability
theory, it covers the basic time and space complexity classes and also includes a few
more modern topics such as probabilistic algorithms, interactive proofs, cryptography,
quantum computers, and the PCP Theorem and its applications.
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About this book

Part II: Lower bounds on concrete computational models. This part describes lower
bounds on resources required to solve algorithmic tasks on concrete models such as
circuits and decision trees. Such models may seem at first sight very different from
Turing machines, but upon looking deeper, one finds interesting interconnections.
Part HI: Advanced topics. This part is largely devoted to developments since the late
1980s. It includes counting complexity, average case complexity, hardness amplification,
derandomization and pseudorandomness, the proof of the PCP theorem, and natural
proofs.

Almost every chapter in the book can be read in isolation (though Chapters 1, 2,

and 7 must not be skipped). This is by design because the book is aimed at many classes
of readers:

Physicists, mathematicians, and other scientists. This group has become increasingly
interested in computational complexity theory, especially because of high-profile results
such as Shor’s algorithm and the recent deterministic test for primality. This intellectu-
ally sophisticated group will be able to quickly read through Part I. Progressing on to
Parts II and III, they can read individual chapters and find almost everything they need
to understand current research.

Computer scientists who do not work in complexity theory per se. They may use the book
for self-study, reference, or to teach an undergraduate or graduate course in theory of
computation or complexity theory.

Anyone—professors or students—who does research in complexity theory or plans to do
so. The coverage of recent results and advanced topics is detailed enough to prepare
readers for research in complexity and related areas.

This book can be used as a textbook for several types of courses:

Undergraduate theory of computation. Many computer science (CS) departments offer
an undergraduate Theory of Computation course, using, say, Sipser’s book [Sip96]. Our
text could be used to supplement Sipser’s book with coverage of some more modern
topics, such as probabilistic algorithms, cryptography, and quantum computing, Under-
graduate students may find these more exciting than traditional topics, such as automata
theory and the finer distinctions of computability theory. The prerequisite mathematical
background would be some comfort with mathematical proofs and discrete mathemat-
ics, as covered in the typical “discrete math” or “math for CS” courses currently offered
in many CS departments.

Introduction to computational complexity for advanced undergrads or beginning grads.
The book can be used as a text for an introductory complexity course aimed at advanced
undergraduate or graduate students in computer science (replacing books such as
Papadimitriou’s 1994 text [Pap94] that do not contain many recent results). Such a
course would probably include many topics from Part I and then a sprinkling from Parts
I1 and IIT and assume some background in algorithms and/or the theory of computation.
Graduate complexity course. The book can serve as a text for a graduate complexity
course that prepares graduate students for research in complexity theory or related
areas like algorithms and machine learning. Such a course can use Part I to review basic
material and then move on to the advanced topics of Parts IT and I1I. The book contains
far more material than can be taught in one term, and we provide on our Web site
several alternative outlines for such a course.
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e Graduate seminars or advanced courses. Individual chapters from Parts II and III can
be used in seminars or advanced courses on various topics in complexity theory (e.g.,
derandomization, the PCP Theorem, lower bounds).

We provide several teaching plans and material for such courses on the book’s Web
site. If you use the book in your course, we’d love to hear about it and get your feedback.
We ask that you do not publish solutions for the book’s exercises on the Web though,
so other people can use them as homework and exam questions as well.

As we finish this book, we are sorely aware of many more exciting results that we
had to leave out. We hope the copious references to other texts will give the reader
plenty of starting points for further explorations. We also plan to periodically update
the book’s Web site with pointers to newer results or expositions that may be of interest
to our readers.

Above all, we hope that this book conveys our excitement about computational
complexity and the insights it provides in a host of other disciplines.

Onward to P versus NP!
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Introduction

As long as a branch of science offers an abundance of problems, so long it is alive; a lack of
problems foreshadows extinction or the cessation of independent development.
— David Hilbert, 1900

The subject of my talk is perhaps most directly indicated by simply asking two questions: first,
is it harder to multiply than to add? and second, why? ... I (would like to) show that there is
no algorithm for multiplication computationally as simple as that for addition, and this proves

something of a stumbling block.
— Alan Cobham, 1964

The notion of computation has existed in some form for thousands of years, in contexts
as varied as routine account keeping and astronomy. Here are three examples of tasks
that we may wish to solve using computation:

Given two integer numbers, compute their product.

Given a set of # linear equations over n variables, find a solution, if it exists.

Given a list of acquaintances and a list of all pairs among them who do not get along,
find the largest set of acquaintances you can invite to a dinner party such that every two
invitees get along with one another.

Throughout history people had a notion of a process of producing an output from
a set of inputs in a finite number of steps, and they thought of “computation” as “a
person writing numbers on a scratch pad following certain rules.”

One of the important scientific advances in the first half of the twentieth century was
that the notion of “computation” received a much more precise definition. From this
definition, it quickly became clear that computation can happen in diverse physical and
mathematical systems—Turing machines, lambda calculus, cellular automata, pointer
machines, bouncing billiards balls, Conway’s Gume of life, and so on. Surprisingly, all
these forms of computation are equivalent—in the sense that each model is capable
of implementing all computations that we can conceive of on any other model (see
Chapter 1). This realization quickly led to the invention of the standard universal elec-
tronic computer, a piece of hardware that is capable of executing all possible programs.
The computer’s rapid adoption in society in the subsequent decades brought compu-
tation into every aspect of modern life and made computational issues important in

Xix



XX Introduction

design, planning, engineering, scientific discovery, and many other human endeavors.
Computer algorithms, which are methods of solving computational problems, became
ubiquitous.

But computation is not “merely” a practical tool. It is also a major scientific concept.
Generalizing from physical models such as cellular automata, scientists now view many
natural phenomena as akin to computational processes. The understanding of reproduc-
tion in living things was triggered by the discovery of self-reproduction in computational
machines. (In fact, a book by the physicist Schroedinger [Sch44] predicted the existence
of a DNA-like substance in cells before Watson and Crick discovered it and was cred-
ited by Crick as an inspiration for that research.) Today, computational models underlie
many research areas in biology and neuroscience. Several physics theories such as QED
give a description of nature that is very reminiscent of computation, motivating some
scientists to even suggest that the entire universe may be viewed as a giant computer
(see Lloyd [L1006]). In an interesting twist, such physical theories have been used in
the past decade to design a model for quantum computation; see Chapter 10.

Computability versus complexity

After their success in defining computation, researchers focused on understanding
what problems are computable. They showed that several interesting tasks are inher-
ently uncomputable: No computer can solve them without going into infinite loops
(i.e., never halting) on certain inputs. Though a beautiful topic, computability will not
be our focus in this book. We discuss it briefly in Chapter 1 and refer the reader to
standard texts [Sip96, HMUO1, Koz97, Rog87] for more details. Instead, we focus on
computational complexity theory, which focuses on issues of computational efficiency—
quantifying the amount of computational resources required to solve a given task. In
the next section, we describe at an informal level how one can quantify efficiency, and
after that we discuss some of the issues that arise in connection with its study.

QUANTIFYING COMPUTATIONAL EFFICIENCY

To explain what we mean by computational efficiency, we use the three examples of
computational tasks we mentioned earlier. We start with the task of multiplying two
integers. Consider two different methods (or algorithms) to perform this task. The
first is repeated addition: to compute « - b, just add 4 to itself b — 1 times. The other
is the grade-school algorithm illustrated in Figure L.1. Though the repeated addition
algorithm is perhaps simpler than the grade-school algorithm, we somehow feel that

5 7 7
4 2 3
1 7 31
1 1 5 4
2 3 0 8

2 4 4071

Figure 1.1. Grade-school algorithm for multiplication. |llustrated for computing 577 - 423.
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the latter is better. Indeed, it is much more efficient. For example, multiplying 577 by 423
using repeated addition requires 422 additions, whereas doing it with the grade-school
algorithm takes 3 multiplications of a number by a single digit and 3 additions.

We will quantify the efficiency of an algorithm by studying how its number of basic
operations scales as we increase the size of the input. For this discussion, let the basic
operations be addition and multiplication of single digits. (In other settings, we may wish
to throw in division as a basic operation.) The size of the input is the number of digits
in the numbers. The number of basic operations used to multiply two n-digit numbers
(i.e., numbers between 1071 and 10%) is at most 2n? for the grade-school algorithm and
at least n10”~! for repeated addition. Phrased this way, the huge difference between
the two algorithms is apparent: Even for 11-digit numbers, a pocket calculator running
the grade-school algorithm would beat the best current supercomputer running the
repeated addition algorithm. For slightly larger numbers even a fifth grader with pen
and paper would outperform a supercomputer. We see that the efficiency of an algorithm
is to a considerable extent much more important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication that uses
the Fast Fourier Transform. It was only discovered some 40 years ago and multiplies two
n-digit numbers using cn log nlog log n operations, where ¢ is some absolute constant
independent of n; see Chapter 16. We call such an algorithm an O(nlog nloglog n)-step
algorithm: see our notational conventions below. As n grows, this number of operations
is significantly smaller than n?.

For the task of solving linear equations, the classic Gaussian elimination algorithm
(named after Gauss but already known in some form to Chinese mathematicians of
the first century) uses O(n?) basic arithmetic operations to solve n equations over n
variables. In the late 1960s, Strassen found a more efficient algorithm that uses roughly
O(n?8!y operations, and the best current algorithm takes O(n**7®) operations; see
Chapter 16.

The dinner party task also has an interesting story. As in the case of multiplication,
there is an obvious and simple inefficient algorithm: Try all possible subsets of the n
people from the largest to the smallest, and stop when you find a subset that does not
include any pair of guests who don’t get along. This algorithm can take as much time as
the number of subsets of a group of # people, which is 2”. This is highly unpractical—an
organizer of, say, a 70-person party, would need to plan it at least a thousand years in
advance, even if she has a supercomputer at her disposal. Surprisingly, we still do not
know of a significantly better algorithm for this task. In fact, as we will see in Chapter 2,
we have reasons to suspect that no efficient algorithm exists, because this task turns
out to be equivalent to the independent set computational problem, which, together
with thousands of other important problems, is NP-complete. The famous “P versus
NP” question (Chapter 2) asks whether or not any of these problems has an efficient
algorithm.

PROVING NONEXISTENCE OF EFFICIENT ALGORITHMS

We have seen that sometimes computational tasks turn out to have nonintuitive algo-
rithms that are more efficient than algorithms used for thousands of years. It would
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therefore be really interesting to prove for some computational tasks that the current
algorithm is the hest—in other words, no better algorithms exist. For instance, we
could try to prove that the O(nlog nloglog n)-step algorithm for multiplication cannot
be improved upon (thus implying that multiplication is inherently more difficult than
addition, which does have an O(n)-step algorithm). Or, we could try to prove that there
is no algorithm for the dinner party task that takes fewer than 27/10 steps. Trying to
prove such results is a central goal of complexity theory.

How can we ever prove such a nonexistence result? There are infinitely many
possible algorithms! So we have to mathematically prove that each one of them is less
efficient that the known algorithm. This may be possible because computation is a
mathematically precise notion. In fact, this kind of result (if proved) would fit into
a long tradition of impossibility results in mathematics, such as the independence of
Euclid’s parallel postulate from the other basic axioms of geometry, or the impossibility
of trisecting an arbitrary angle using a compass and straightedge. Such results count
among the most interesting, fruitful, and surprising results in mathematics.

In complexity theory, we are still only rarely able to prove such nonexistence of
algorithms. We do have important nonexistence results in some concrete computa-
tional models that are not as powerful as general computers, which are described in
Part II of the book. Because we are still missing good results for general computers,
one important source of progress in complexity theory is our stunning success in interre-
lating different complexity questions, and the rest of the book is filled with examples of
these.

SOME INTERESTING QUESTIONS ABOUT COMPUTATIONAL EFFICIENCY

Now we give an overview of some important issues regarding computational complex-
ity, all of which will be treated in greater detail in later chapters. An overview of
mathematical background is given in Appendix A.

1. Computational tasks in a variety of disciplines such as the life sciences, social sciences,
and operations research involve searching for a solution across a vast space of possibil-
ities (e.g., the aforementioned tasks of solving linear equations and finding a maximal
set of invitees to a dinner party). This is sometimes called exhaustive search, since
the search exhausts all possibilities. Can this exhaustive search be replaced by a more
efficient search algorithm?

As we will see in Chapter 2, this is essentially the famous P vs. NP question, consid-
ered the central problem of complexity theory. Many interesting search problems are
NP-complete, which means that if the famous conjecture P # NP is true, then these
problems do not have efficient algorithms; they are inherently intractable.

2. Can algorithms use randomness (i.e., coin tossing) to speed up computation?

Chapter 7 introduces randomized computation and describes efficient probabilistic
algorithms for certain tasks. But Chapters 19 and 20 show a surprising recent result giving
strong evidence that randomness does rot help speed up computation too much, in the
sense that any probabilistic algorithm can be replaced with a deterministic algorithm
(tossing no coins) that is almost as efficient.
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3. Can hard problems become easier to solve if we allow the algorithms to err on a small
number of inputs, or to only compute an approximate solution?

Average-case complexity and approximation algorithms are studied in Chapters 11,
18, 19, and 22. These chapters also show fascinating connections between these ques-
tions, the power of randomness, different notions of mathematical proofs, and the
theory of error correcting codes.

4. Can we derive any practical benefit from computationally hard problems? For example,
can we use them to construct cryptographic protocols that are unbreakabie (at least by
any plausible adversary)?

As described in Chapter 9, the security of digital cryptography is intimately related
to the P vs. NP question (see Chapter 2) and average-case complexity (see Chapters 18).

5. Canwe use the counterintuitive quantum mechanical properties of matter to build faster
computers?

Chapter 10 describes the fascinating notion of quantum computers that use quantum
mechanics to speed up certain computations. Peter Shor has shown that, if ever built,
quantum computers will be able to factor integers efficiently (thus breaking many cur-
rent cryptosystems). However, currently there are many daunting obstacles to actually
building such computers.

6. Do we need people to prove mathematical theorems, or can we generate mathematical
proofs automatically? Can we check a mathematical proof without reading it com-
pletely? Do interactive proofs, involving a dialog between prover and verifier, have
more power than standard “static” mathematical proofs?

The notion of proof, central to mathematics, turns out to be central to compu-
tational complexity as well, and complexity has shed new light on the meaning of
mathematical proofs. Whether mathematical proofs can be generated automatically
turns out to depend on the P vs. NP question (see Chapter 2). Chapter 11 describes
probabilistically checkable proofs. These are surprisingly robust mathematical proofs
that can be checked simply by reading them in very few probabilistically chosen loca-
tions, in contrast to the traditional proofs that require line-by-line verification. Along
similar lines we introduce the notion of inferactive proofs in Chapter 8 and use them
to derive some surprising results. Finally, proof complexity, a subfield of complexity
studying the minimal proof length of various statements, is studied in Chapter 15.

Atroughly 40 years, complexity theory is still an infant science, and many important
results are less than 20 years old. We have few complete answers for any of these
questions. In a surprising twist, computational complexity has also been used to prove
some metamathematical theorems: They provide evidence of the difficulty of resolving
some of the questions of . .. computational complexity; see Chapter 23.

We conclude with another quote from Hilbert’s 1900 lecture:

Proofs of impossibility were effected by the ancients . . . [and] in later mathematics, the question
as to the impossibility of certain solutions plays a preminent part. . . .

In other sciences also one meets old problems which have been settled in a manner most
satisfactory and most useful to science by the proof of their impossibility. . . . After seeking in
vain for the construction of a perpetual motion machine, the relations were investigated which
muust subsist between the forces of nature if such a machine is to be impossible; and this inverred
question led to the discovery of the law of the conservation of energy. . ..
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It is probably this important fact along with other philosophical reasons that gives rise to
conviction . . . that every definite mathematical problem must necessarily be susceptible to an
exact settlement, either in the form of an actual answer to the question asked, or by the proof
of the impossibility of its solution and therewith the necessary failure of all attempis. ... This
conviction . . . is a powerful incentive to the worker. We hear within us the perpetual call: There
is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is
no ignorance.
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