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Preface

A central research area in data mining and machine learning is probabilis-
tic modeling because it has a number of advantages over non-probabilistic
methods. Given a probabilistic model, one could fit the model using max-
imum likelibhood (ML) method or Variational Bayesian (VB) method. In
ML method, (1) many algorithms may converge very slowly and thus com-
putatio;ally efficient algorithms are often desirable; and (2) the choice of
a suitable model is difficult though many model selection criteria exist and
thus criteria with higher accuracy are desired. In VB method, employing
different priors may yield different performances and thus studies on how
to choose a suitable prior are important. In this book, three sub-topics were
studied: Modeling, Estimation and Model selection for dimension reduc-

tion and clustering.

Modeling: To overcome the serious problems when probabilistic prin-
cipal component analysis (PPCA) is applied to 2D data, a bilinear PPCA
was proposed, which itself declares a breakthrough from traditional linear
latent variable models to the bilinear ones. The result from our extensive
empirical studies is encouraging.

Estimation: A new conditional maximization (CM) algorithm was pro-
posed for ML estimation in factor analysis, which, like expectation maxi-

mization (EM) algorithm, is easy to implement and converge stably. The
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novelty is that our CM possesses quadratic conyergence. Empirical result-
s show that CM outperforms all existing competing algorithms. The CM
algorithm for factor analysis was then extended to mixtures of factor ana-
lyzers, resulting in a fast expectation CM (ECM) algorithm. As revealed
by experiments, the convergence of our ECM is substantially faster than
that of existing algorithms. For VB estimation of factor analysis, existing
works were found to suffer two serious problems theoretically and empir-
ically. A novel VB treatment is proposed to resolve the two problems and
a simulation study was conducted to testify its improved performance over
existing treatments.

Model selection: A novel model selection criterion called hierarchical
BIC (H-BIC) was proposed for mixture model selection using ML method.
We showed theoretically and empirically that H-BIC 1s a large sample ap-
proximation of VB lower bound and the widely used Bayesian information

criterion (BIC) is further an approximation of H-BIC.
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Chapter 1

Introduction

Dimension reduction is important in many disciplines such as botany, biol-
ogy, bioinformatics, social sciences, economics, engineering, etc., because
of one of the reasons including: (1) the interesting structure of the high
dimensional data generally lies in a low dimensional space and thus more
compact and meaningful representation for the data is required for visual-
ization, interpretation, analysis, etc; (2) the dimensionality of the data is
too high to be handled for certain algorithm. One example of high dimen-
sional data is face recognition, where if face images are cropped to 40 x 50
pixels, then the resulting data dimension is two thousands and could be
higher if larger size is used.

One way to reduce data dimension is to use subset selection, i.e., on-
ly select a subset of original features that retain the original information
as much as postsible according to certain criterion. However, in many ap-

plications, instead of original features themselves we are interested in the



