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Preface

This text is intended to serve as an introduction to the geometry of the action
of discrete groups of Mobius transformations. The subject matter has now
been studied with changing points of emphasis for over a hundred years, the
most recent developments being connected with the theory of 3-manifolds:
see, for example, the papers of Poincaré [77] and Thurston [101]. About
1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen
manuscript appeared. Sadly, the manuscript never appeared in print, and this
more modest text attempts to display at least some of the beautiful geo-
metrical ideas to be found in that manuscript, as well as some more recent
material.

The text has been written with the conviction that geometrical explana-
tions are essential for a full understanding of the material and that however
simple a matrix proof might seem, a geometric proof is almost certainly more
profitable. Further, wherever possible, results should be stated in a form that
is invariant under conjugation, thus making the intrinsic nature of the result
more apparent. Despite the fact that the subject matter is concerned with
groups of isometries of hyperbolic geometry, many publications rely on
Euclidean estimates and geometry. However, the recent developments have
again emphasized the need for hyperbolic geometry, and I have included a
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry.
It is hoped that this chapter will serve as a ‘*dictionary ™ of formulae in plane
hyperbolic geometry and as such will be of interest and use in its own right.
Because of this, the format is different from the other chapters: here, there is
a larger number of shorter sections, each devoted to a particular result or
theme.

The text is intended to be of an introductory nature, and I make no
apologies for giving detailed (and sometimes elementary) proofs. Indeed,
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many geometric errors occur in the literature and this is perhaps due, to
some extent, to an omission of the details. I have kept the prerequisites to a
minimum and, where it seems worthwhile, I have considered the same topic
from different points of view. In part, this is in recognition of the fact that
readers do not always read the pages sequentially. The list of references is
not comprehensive and I have not always given the original source of a
result. For ease of reference, Theorems, Definitions, etc., are numbered
collectively in each section (2.4.1,2.4.2,...).

1 owe much to many colleagues and friends with whom I have discussed
the subject matter over the years. Special mention should be made, however,
of P. J. Nicholls and P. Waterman who read an earlier version of the manu-
script, Professor F. W. Gehring who encouraged me to write the text and
conducted a series of seminars on parts of the manuscript, and the notes
and lectures of L. V. Ahlfors. The errors that remain are mine.

Cambridge, 1982 ALAN F. BEARDON
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CHAPTER 1
Preliminary Material

§1.1. Notation

We use the following notation. First, Z, Q, R and C denote the integers, the
rationals, the real and complex numbers respectively: H denotes the set of
quaternions (Section 2.4).

As usual, R" denotes Euclidean n-space, a typical point in this being
x = (x,,...,Xx,) with
X = (3 + - + XD
Note that if y > 0, then y!/2 denotes the positive square root of y. The
standard basis of R" is ey, ..., e, where, for example, e, = (1,0, ..., 0).
Certain subsets of R" warrant special mention, namely

B"={xeR" |x| < 1},
H = {xeR": x, > 0},
and

§S"1 = {xeR:|x| =1}

In the case of C (identified with R?) we shall use A and dA for the unit
disc and unit circle respectively.

The notation x — x? (for example) denotes the function mapping x to x?:
the domain will be clear from the context. Functions (maps or transforma-
tions) act on the left : for brevity, the image f(x) is often written as fx (omitting
brackets). The composition of functions is written as fg: this is the map

X = f(g(x))-
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Two sets A and B meet (or 4 meets B) if A n B # (. Finally, a property

P(n) holds for almost all n (or all sufficiently large n) if it fails to hold for only
a finite set of n.

§1.2. Inequalities

All the inequalities that we need are derivable from Jensen’s inequality: for a
proof of this, see {90], Chapter 3.

Jensen’s Inequality. Let u be a positive measure on a set X with p(X) = 1,
let £ X — (a, b) be p-integrable and let ¢:(a, b) — R be any convex function.

Then
¢( Lfdu) < L(abf) d. (12.1)

Jensen’s inequality includes Holder’s inequality

Lfy dy < (Lf ? du) " ( ng dau)u2

as a special case: the discrete form of this is the Cauchy-Schwarz inequality

fz a;bl < (Z ,ailz)uz(z (b [H)'?

for real a; and b;. The complex case follows from the real case and this can, of
course, be proved by elementary means.

Taking X = {x,,..., x,} and ¢(x) = €*, we find that (1.2.1) yields the
general Arithmetic-Geometric mean inequality

VWeomm Syt o tans

where p has mass y; at x; and y; = ¢f(x;).

In order to apply (1.2.1) we need a supply of convex functions: a sufficient
condition for ¢ to be convex is that $'¥ = 0 on (a, b). Thus, for example,
the functions cot, tan and cot? are all convex on (0, n/2). This shows, for
instance, that if 8, ..., 8, are all in (0, 7/2) then

< (122
n

(91 +---+9,,) cotf, +---+ cot b,
cot < - .

As another application, we prove that if x and y are in (0, 7/2) and
x + y < n/2 then

tan x tan y < tanz(f—;l). (1.2.3)
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Writing w = (x + y)/2, we have

tanx + tan y

————= = tan
l —tanxtany x+)

_ 2tanw
T 1 —tan?w’

As tan is convex, (1.2.1) yields
tanx + tany > 2tanw

and the desired inequality follows immediately (noting that tan? w < 1 so
both denominators are positive).

§1.3. Algebra

We shall assume familiarity with the basic ideas concerning groups and (to a
lesser extent) vector spaces. For example, we shall use elementary facts about
the group S, of permutations of {1, 2, ..., n}: in particular, S, is generated
by transpositions. As another example, we mention that if 6:G —- H is a
homomorphism of the group G onto the group H, then the kernel K of 8 is a
normal subgroup of G and the quotient group G/K is isomorphic to H.

Let g be an element in the group G. The elements conjugate to g are the
elements hgh™! in G (heG) and the conjugacy classes {hgh™':he G}
partition G. In passing, we mention that the maps x — xgx~* and x > gxg ™!
(both of G onto itself) play a special role in the later work. The commutator
of gand his

[g, K] = ghg™'h~":

for our purposes this should be viewed as the composition of g and a
conjugate of g~ 1.

Let G be a group with subgroups G; (i belonging to some indexing set).
We assume that the union of the G, generate G and that different G; have only
the identity in common. Then G is the free product of the G; if and only if
each g in G has a unique expression as g, - - - g, where no two consecutive g;
belong to the same G;. Examples of this will occur later in the text.

§1.4. Topology

We shall assume a knowledge of topology sufficient, for example, to discuss
Hausdorff spaces, connected spaces, compact spaces, product spaces and
homeomorphisms. In particular, if f is a 1-1 continuous map of a compact
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space X onto a Hausdorff space Y, then f is a homeomorphism. As special
examples of topologies we mention the discrete topology (in which every
subset is open) and the topology derived from a metric p on a set X. An
isometry f of one metric space (X, p) onto another, say (Y, a), satisfies

U(fxv fy) = P(x, y)

and is necessarily a homeomorphism.

Briefly, we discuss the construction of the quotient topology induced by a
given function. Let X be any topological space, let Y be any non-empty set
and let f: X — Y be any function. A subset V of Y is open if and only if f ~ (V)
is an open subset of X : the class of open subsets of Y is indeed a topology
J; on Y and is called the quotient topology induced by f. With this topology,
f is automatically continuous. The following two results on the quotient
topology are useful.

Proposition 1.4.1. Let X be a topological space and suppose that [ maps X
onto Y. Let  be any topology on Y and let J; be the quotient topology on Y
induced by f.

() Iff: X - (Y, ) is continuous, then I < J .
2) If f: X — (Y, T) is continuous and open, then I = .

PROOF. Suppose that f: X — (Y, J) is continuous. If Visin 7, then f~ vy
is in open in X and so V is in 7. If, in addition, f: X — (Y, 7) is an open
map then V in J; implies that f ~'(V) is open in X and so f(f~ V)isin 7.
As f is surjective, f(f"'V) = Vso F, = J. O

Proposition 1.4.2. Suppose that f maps X into Y where X and Y are topological
spaces, Y having the quotient topology J;. For each map g: Y — Z define
g1: X = Z by g, = gf- Then g is continuous if and only if g, is continuous.

PROOF. As f is continuous, the continuity of g implies that of g,. Now suppose
that g, is continuous. For an open subset ¥ of Z (we assume, of course, that
Z is a topological space) we have

@)W =/""'V)

and this is open in X. By the definition of the quotient topology, g~ (V) is
open in Y so g is continuous. a

An alternative approach to the quotient topology is by equivalence rela-
tions. If X carries an equivalence relation R with equivalence classes [x],
then X/R (the space of equivalence classes) inherits the quotient topology
induced by the map x— [x]. Equally, any surjective function f: X — Y
induces an equivalence relation R on X by xRy if and only if f(x) = f(y)
and Y can be identified with X/R. As an example, let G be a group of homeo-
morphisms of a topological space X onto itself and let f map each x in X
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to its G-orbit [x] in X/G. If X/G is given the induced quotient topology, then
f: X = X/G is continuous. In this case, f is also an open map because if V
is open in X then so is

[7avy= e

geG

Finally, the reader will benefit from an understanding of covering spaces
and Riemann surfaces although most of the material in this book can be read
independently of these ideas. Some of this is discussed briefly in Chapter 6:
for further information, the reader is referred to (for example) [4], [6],
[28], [50], {63] and [100].

§1.5. Topological Groups

A topological group G is both a group and a topological space, the two
structures being related by the requirement that the maps x+>x~! (of G
onto G) and (x, y)—xy (of G x G onto G) are continuous: obviously,
G x G is given the product topology. Two topological groups are isomorphic
when there is a bijection of one onto the other which is both a group iso-
morphism and a homeomorphism: this is the natural identification of
topological groups.

For any y in G, the space G x {y} has a natural topology with open sets
A x {y} where A4 is open in G. The map x> (x, y) is a homeomorphism
of Gonto G x {y} and the map (x, y)+— xy is a continuous map of G x {y}
onto G. It follows that x+ xy is a continuous map of G onto itself with
continuous inverse x +— xy~ ! and so we have the following elementary but
useful result.

Proposition 1.5.1. For each y in G, the map x — xy is a homeomorphism of G
onto itself: the same is true of the map x — yx.

A topological group G is discrete if the topology on G is the discrete
topology: thus we have the following Corollary of Proposition 1.5.1.

Corollary 1.5.2. Let G be a topological group such that for some g in G, the
set {@} is open. Then each set {y} (y € G) is open and G is discrete.
Given a topological group G, define the maps

o(x) = xax~!

and

Y(x) = xax"'a”! = [x, a},



