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Chapter 1 Graphs and Subgraphs

Chapter 1 Graphs and subgraphs

1.1 Graphs and Their Representation

1.1.1 Introduction

Graph theory had closely relations with mathematical games at the beginning. In previous
Konigsberg City (now Kaliningrad), there was a river Pregel with two small islands in it.
Seven bridges linked the two islands with the bank, as shown in Fig. 1-1(a). It was such a
problem: Can we travel across each of the seven bridges once and only once and finally

return to the starting point? This is the famous Seven Bridge Problem.

b

Fig. 1-1 The Seven Bridge Problem

In 1736, Euler solved the problem. Euler used four points to stand for the two islands
and two banks, respectively, and used line between the two points to stand for the bridge,
as shown in Fig. 1-1(b). Therefore the question is; In this graph, can you find a closed
route that travels every line once and only once.

It is not difficult to understand. If such a route exists, for each point, corresponding to
each line entering, there should be a line leaving. Therefore, the number of lines incident
with each point should be even. But in Fig. 1-1(b), the number of lines incident with each
point is odd. So the Seven Bridge Problem has no solution,

In 1857, Hamilton invented a game. The 20 vertices of the dodecahedron stand for 20
cities. The problem is: Can we start from one city, travel every city once and only once
and return to the original. This is the so-called ‘ Problem of Arounding the World’ as
shown in Fig. 1-2.

Although graph theory originates from mathematic games, it also has actual
backgrounds. Since the 20th century., graph theory has been applied in many scientific
« 1w



Graph Theory and its Alogrithms

Fig. 1-2 Problem of arounding the world

fields, such as physics, chemical, calculator science, electron science, control theory,

information theory, network theory, society research, economical manage, etc,
1.1.2 Definitions

Definition 1.1 A graph G is an ordered pair (V(G), E(G)) consisting of a set V(G) of
vertices and a set E(G), disjoint from V(G), of edges, together with an incidence function
¥ that associates with each edge of G an unordered pair of (not necessarily distinct)
vertices of G.

If ¢ is an edge and u and v are vertices such that W;(e) ={u,v}, then e is said to join u
and v, and the vertices u and v are called the ends of e. We denote the numbers of vertices
and edges in G by v(G) and ¢(G); these two basic parameters are called the erder and size
of G, respectively. '

Two examples of graphs should serve to clarify the definition. For notational simplicity,
we write uv for the unordered pair {u,v}.

Example 1.1
G = (V(G,EWG)
where
V(G) = {u,v,w,x,y} E(G) = {a,byc,dse.fog h}
and ¥; is defined by
Yela) =uv Ve(b) =uu V(o) =ww Vs(d) = wzr
Vele) = ur We(f) = wr We(g) =uxr Ws(h) = zxy
Example 1, 2
H= (V(H),E(H))
where
V(H) = {0201V 5V3 54 505 }
E(H) = {e)ses+€3,€51€51€5 17 1€5 165 1€10 }
and ¥y is defined by
Vule) =vv: ¥nle) = vy ¥hle) = vy, Wule) = vv; Whle) = vy
Vyules) = vovy ¥uler) = vv; Wule) = vovs Whle) = vowy, Wyulew) = vous

-2.



Chapter 1 Graphs and Subgraphs

1.1.3 Drawings of Graphs

Graphs are so named because they can be represented graphically, and it is this graphical
representation which helps us understand many of their properties. Each vertex is
indicated by a point, and each edge by a line joining the points representing its ends,
Diagrams of G and H are shown in Fig. 1-3. (For clarity, vertices are represented by small

circles. )

Fig. 1-3 Diagrams of the graphs G and H

There is no single correct way to draw a graph; the relative positions of points
representing vertices and the shapes of lines representing edges usually have no
significance. In Fig. 1-3, the edges of G are depicted by curves, and those of H by
straight-line segments. A diagram of a graph merely depicts the incidence relation holding
between its vertices and edges.

Most of the definitions and concepts in graph theory are suggested by this graphical
representation, The ends of an edge are said to be incident with the edge, and vice versa.
Two vertices which are incident with a common edge are adjacent, as are two edges which
are incident with a common vertex, and two distinct adjacent vertices are neighbors. The
set of neighbors of a vertex v in a graph G is denoted by N (v).

An edge with identical ends is called a loop, and an edge with distinct ends a link, Two
or more links with the same pair of ends are said to be parallel edges. In the graph G of
Fig. 1-3, the edge # is a loop, and all other edges are links; the edges & and f are parallel
edges.

Throughout the book, the letter G denotes a graph. Moreover, when there is no scope
for ambiguity, we omit the letter G from graph-theoretic symbols and write, for example,
V and E instead of V(G) and E(G). In such instances, we denote the numbers of vertices
and edges of G by » and m, respectively.

A graph is finite if both its vertex set and edge set are finite. In this boock, we mainly
study finite graphs, and the term ‘graph’ always means ‘finite graph’. The graph with no
vertices (and hence no edges) is the null graph. Any graph with just one vertex is referred
to as trivial. All other graphs are neontrivial. We admit the null graph solely for
mathematical convenience. Thus, unless otherwise specified, all graphs under discussion

03.



Graph Theory and its Alogrithms

should be taken to be nonnull,

A graph is simple if it has no loops or parallel edges. The graph H in Example 1. 2 is
simple, whereas the graph G in Example 1. 1 is not. Much of graph theory is concerned
with the study of simple graphs.

Remark A set V, together with a set E of two-element subsets of V, defines a simple
graph (V,E), where the ends of an edge uv are precisely the vertices # and v. Indeed, in
any simple graph we may dispense with the incidence function ¥ by renaming each edge as
the unordered pair of its ends. In a diagram of such a graph, the labels of the edges may

then be omitted.
1.1.4 Special Families of Graphs

Some graphs with simple structures are thought to deserve special names. A vertex-graph
is an edgeless graph having exactly one vertex [Fig, 1-4(a)]. A loop-graph consists of a
single loop with its one end [Fig. 1-4(b)], and a link-graph consists of a single link with
its two ends [ Fig. 1-4(c) .

(a) (b) ©

Fig.1-4 (a) A vertex-graph;(b) a loop-graph;(c} a link-graph

Definition 1.2 A path is a simple graph whose vertices can be arranged in a linear sequence
in such a way that two vertices are adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise.

Definition 1.3 A cycle on three or more vertices is a simple graph whose vertices can be
arranged in a cyclic sequence in such a way that two vertices are adjacent if they are
consecutive in the sequence, and are nonadjacent otherwise; a cycle on one vertex consists
of a single vertex with a loop, and a cycle on two vertices consists of two vertices joined by
a pair of parallel edges.

The length of a path or a cycle is the number of its edges. A path or cycle of length % is
called a k-path or k-cycle, respectively; the path or cycle is odd or even according to the
parity of k. A 3-cycle is often called a triangle, a 4-cycle a quadrilateral, a 5-cycle a
pentagon, a 6-cycle a hexagon, and so on.

Fig. 1-5 depicts a 3-path and a 5-cycle.

Definition 1.4 A complete graph or clique is a simple graph in which any two vertices are
adjacent, an empty graph one in which no two vertices are adjacent (that is, one whose
edge set is empty).

We frequently use K, for the complete graph of ordern. Then K, is a loopless graph

o« 4 .



Chapter 1 Graphs and Subgraphs
U
L] ¢!
U V2
u, Uy V4 Uy
(a) b

Fig. 1-5 (a) A path of length three;(b) a cycle of length five

1
2

with exactly n vertices and --n(n—1) edges, each pair of vertices being joined by a single

link.

Definition 1. 5 A graph is bipartite if its vertex set can be partitioned into two subsets X
and Y so that every edge has one end in X and one end in Y; such a partition (X,Y) is
called a bipartition of the graph, and X and Y its parts.

We denote a bipartite graph G with bipartition (X,Y) by G[ X,Y]. If G[ X,Y] is simple
and every vertex in X is joined to every vertex in Y, then G is called a complete bipartite
graph. A star is a complete bipartite graph G[X,Y] with | X|=1or |Y|=1,

Fig. 1. 6 shows diagrams of a complete graph, a complete bipartite graph, and a star.

A simple graph is r-partite graph , if

V=v,UV. U UV.. V, NV, =G#)
and no edge joins two vertices in the same class, The symbol K, .,,...., denotes a complete
r-partite graph which has n; vertices in the ith class and contains all edges joining vertices

in distinct classes.

7 M
x x2 X3
Vg v, ¥s y:
x)
v v N Y2 Y3 » Y3
(@ (b) (c)

Fig. 1-6 (a) A complete graph;(b) a complete bipartite graph;(c¢) a star

Definition 1,6 A graph is connected if, for every partition of its vertex set into two
nonempty sets X and Y, there is an edge with one end in X and one end in Y; a graph is
disconnected if its vertex set can be partitioned into two nonempty subsets X and Y so that
no edge has one end in X and one end in Y.

Connection is an equivalence relation on the vertex set V. Thus there is a partition of V
into nonempty subsets V,,V;,++,V_ such that two vertices u and v are connected if and
only if both u and v belong to the same set V;. The subgraphs G[V,],G[V,],*,G[V,]
are called the components of G. We denote the number of components of G by «(G).

e 5
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Examples of connected and disconnected graphs are displayed in Fig. 1-7.

1 :
1 3 3 2 6
(b)

(a)

Fig. 1-7 (a) A connected graph:(b) a disconnected graph

For the sake of clarity, we observe certain conventions in representing graphs by
diagrams: we do not allow an edge to intersect itself. nor let an edge pass through a vertex
that is not an end of the edge; clearly, this is always possible. However, two edges may
intersect at a point that does not correspond to a vertex, as in the drawings of the first two
graphs in Fig. 1-6.

Definition 1. 7 A graph which can be drawn in the plane in such a way that edges meet only
at points corresponding to their common ends is called a planar graph . and such a drawing
is called a planar embedding of the graph.

For instance, the graphs G and H of Example 1. 1 and Example 1. 2 are both planar,
even though there are crossing edges in the particular drawing of G shown in Fig. 1-3. The

first two graphs in Fig, 1-6, on the other hand, are not planar, as proved later.
1.1.5 Incidence and Adjacency Matrices

Although drawings are a convenient means of specifying graphs., they are clearly not
suitable for storing graphs in computers, or for applying mathematical methods to study
their properties. For these purposes, we consider two matrices associated with a graph,
its incidence matrix and its adjacency matrix.

Definition 1. 8 The incidence matrix of G is the nXm matrix M;:=(m, )., where m,, is the
number of times (0,1, or 2) that vertex v and edge ¢ are incident.

Definition 1,9 The adjacency matrix of G is the nXn matrix A;:=(a,, ), where a,, is the
number of edges joining vertices ¥ and v, each loop counting as two edges,

Incidence and adjacency matrices of the graph G of Fig. 1-3 are shown in Fig. 1-8.

(12000010
v|10101000
wi00110100
00011111
¥[00000001

M A

Fig. 1-8 Incidence and adjacency matrices of a graph
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Remark 1 Because most graphs have many more edges than vertices, the adjacency matrix
of a graph is generally much smaller than its incidence matrix and thus requires less
storage space., When dealing with simple graphs. an even more compact representation is
possible. For each vertex v, the neighbors of v are listed in some order. A list (N(v)tv€E
V) of these lists is called an adjacency list of the graph. Simple graphs are usually stored
in computers as adjacency lists.

Remark 2 When G is a bipartite graph, as there are no edges joining pairs of vertices
belonging to the same part of its bipartition, a matrix of smaller size than the adjacency
matrix may be used to record the numbers of edges joining pairs of vertices. Suppose that
G[ X, Y] is a bipartite graph, where X s={x,,x;,*.x,} and Y :={y,,y,,,v5,}. We
define the bipartite adjacency matrix of G to be the rX s matrix B, =(b; ), where b; is the

number of edges joining x; and y;.
1.1.6 Vertex Degrees

Definition 1, 10 The degree of a vertex v in a graph G, denoted by d;(v), is the number of
edges of G incident with v, each loop counting as two edges.

In particular, if G is a simple graph, d;(v) is the number of neighbors of v in G, A
vertex of degree zero is called an isolated vertex. We denote by §(G) and A (G) the

minimum and maximum degrees of the vertices of G, and by d(G) their average degree,

1
— D evd ().

Theorem 1.1 For any graph G,
Did(v) = 2m (1.1

vEV
Proof Consider the incidence matrix M of G. The sum of the entries in the row

corresponding to vertex v is precisely d(w). Therefore E .vd (v) is just the sum of all the

entries in M. But this sum is also 2m, because each of the m column sums of M is 2, each
edge having two ends. O
Corollary 1.2 In any graph, the number of vertices of odd degree is even,
Proof Consider equation (1. 1) modulo 2. We have

1 (mod 2) if d(v) is odd

0 (mod 2) if d(v) is even

Thus, modulo 2, the left-hand side is congruent to the number of vertices of odd

d(v) =

degree, and the right-hand side is zero. The number of vertices of odd degree is therefore
congruent to zero modulo 2. O
Propesition 1.3 Let G[ X,Y] be a bipartite graph without isolated vertices such that d(x)=>d(y)
for all xy€ E, where x€ X and y€Y. Then | X|<{|Y|, with equality if and only if d(x)=d(y)
for all xy€ E.

Proof The first assertion follows if we can find a matrix with | X| rows and |Y| columns in

.7.
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which each row sum is one and each column sum is at most one. Such a matrix can be
obtained from the bipartite adjacency matrix B of G[ X, Y] by dividing the row
corresponding to vertex x by d(x), for each x € X. (This is possible since d{(x)#0.)
Because the sum of the entries of B in the row corresponding to x is d(x) , all row sums of

the resulting matrix B’ are equal to one. On the other hand, the sum of the entries in the
column of B’ corresponding to vertex y is Z 1/d(x) , the sum being taken over all edges

xy incident to y, and this sum is at most one because 1/d(x)<1/d(y) for each edge xy,
by hypothesis, and because there are d(y) edges incident to y.

The above argument may be expressed more concisely as follows.

K= A - SN <O s = S s = ¥l

x€xyeY s€Eray€E s€ray€E TyEYrEX

ry€EE yeY yeY ay€E
Furthermore, if | X|=|Y|, the middle inequality must be an equality, implying that
d(x)=d(y) for all xyEE. : O

Definition 1, 11 A graph G is k-regular if d(v)==% for all v€V; aregular graph is one that
is k-regular for some &.

For instance, the complete graph on n vertices is (n — 1)-regular, and the complete
bipartite graph with % vertices in each part is k-regular, For k= 0,1 and 2, k-regular
graphs have very simple structures and are éasily characterized. By contrast, 3-regular
graphs can be remarkably complex. These graphs. also referred to as cubic graphs, play a

prominent role in graph theory.
1.1.7 Isomorphisms

Definition 1. 12 Two graphs G and H are identical, written G=H, if V(G)=V(H) ,E(G) =
E(H), and ¢s=¢un.

If two graphs are identical, they can clearly be represented by identical diagrams.
However, it is also possible for graphs that are not identical to have essentially the same
diagram, For example, the graphs G and H in Fig. 1-9 can be represented by diagrams
which look exactly the same, as the second drawing of H shows; the sole difference lies in
the labels of their vertices and edges. Although the graphs G and H are not identical, they
do have identical structures, and are said to be isomorphic.

Definition 1, 13 Two graphs G and H are isomorphic, written G == H , if there are
bijections §:V(G) >V (H) and @: E(G)—~>E(H) such that ¢ (e) = uv if and only if
¢ (@(e)) =0(u)f(v); such a pair of mappings is called an isomorphism between G and H,

In order to show that two graphs are isomorphic, one must indicate an isomorphism

between them. The pair of mappings (@,®) defined by
9= (a b ¢ d)

€, €3 €3 €y €; €s
w 2 ¥y

f3 f4 fl fG f5 f2
is an isomorphism between the graphs G and H in Fig. 1-9.
L3 8 -



Chapter 1 Graphs and Subgraphs

J;
a €3 b w 2 z w fi Z
& & A & s S A 1. S5
3 A
d € 4 y £ z T A y
G H H

Fig. 1-9 Isomorphic graphs

Remark 1 In the case of simple graphs, the definition of isomorphism can be stated more
concisely, because if (8, ®) is an isomorphism between simple graphs G and H, the
mapping & is completely determined by @; indeed, &{e) =0(«)d(v) for any edge e=uwuv of
G. Thus one may define an isomorphism between two simple graphs G and H as a bijection
#:V(G)—V (H) which preserves adjacency (that is, the vertices u and v are adjacent in G
if and only if their images §(u) and §(v) are adjacent in H). Consider, for example, the
graphs G and H in Fig. 1-10.
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Fig. 1-10 Isomorphic simple graphs

The mapping
(123456
- (b dfcea )
is an isomorphism between G and H, as is
o (123456)
aced fb
Remark 2 Isomorphic graphs clearly have the same numbers of vertices and edges. On the
other hand, equality of these parameters does not guarantee isomorphism. For instance,
the two graphs shown in Fig. 1-11 both have eight vertices and twelve edges, but they are
not isomorphic. To see this, observe that the graph G has four mutually nonadjacent
vertices, v, ,v;3,Us» and vy, If there were an isomorphism § between G and H, the vertices
ACv1),0Cv3),0(ws)s and §(vs) of H would likewise be mutually nonadjacent. But it can
readily be checked that no four vertices of H are mutually nonadjacent. We deduce that G
and H are not isomorphic,
Remark 3 Up to isomorphism, there is just one complete graph on n vertices, denoted K,.
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