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Preface

It is now generally recognized that the field of combinatorics has, over the past
years, evolved into a fully-fledged branch of discrete mathematics whose potential
with respect to computers and the natural sciences is only beginning to be realized.
Still, two points seem to bother most authors: The apparent difficulty in defining
the scope of combinatorics and the fact that combinatorics seems to consist of a
vast variety of more or less unrelated methods and results. As to the scope of the
field, there appears to be a growing consensus that combinatorics should be
divided into three large parts:

(a) Enumeration, including generating functions, inversion, and calculus of
finite differences; o

(b) Order Theory, including finite posets and lattices, matroids, and existence
results such as Hall’s and Ramsey’s;

(c) Configurations, including designs, permutation groups, and coding theory.

The present book covers most aspects of parts (a) and (b), but none of (c). The
reasons for excluding (c) were twofold. First, there exist several older books on the
subject, such as Ryser [1] (which I still think is the most seductive introduction to
combinatorics), Hall [2), and more recent ones such as Cameron-Van Lint {1] on
groups and designs, and Blake-Mullin [1] on coding theory, whereas no compre-
hensive book exists on (a) and (b). Second, the vast diversity of types of designs,
the very complicated methods usually still needed to prove existence or non-
existence, and, in general, the rapid change this subject is presently undergoing do
not favor a thorough treatment at this moment. I have also omitted reference to
algorithms of any kind because I feel that presently nothing more can be said in
book form about this subject beyond Knuth 1], Lawler [1], and Nijenhuis-Wilf {1},

As to the second point, that of systematizing the definitions, methods, and
results into something resembling a theory, the present book tries to accomplish
just this, admittedly at the expense of some of the spontaneity and ingenuity that
makes combinatorics so appealing to mathematicians and non-mathematicians
alike. To start with, mappings are grouped together into classes by placing
various restrictions on them. To stick to the division outlined above, these classes
of mappings are then counted, ordered, and arranged. The emphasis on ordering
is well justified by the everyday experience of a combinatorist that most discrete
structures, while perhaps lacking a simple algebraic structure, invariably admit
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a natural ordering. Following this program, the book is divided into three parts, the
first part presenting the basic material on mappings and posets, in Chapters | and
11, respectively, the second part dealing with enumeration in Chapters Iil to V,
and the third part on the order-theoretical aspects in Chapters VI-VIII.

The arrangement of the material allows the reader to use the three parts almost
independently and to combine several subsections into a course on special topics.
For instance, Chapter Il has been used as an introduction to finite lattices,
Chapters V1 and V1l as a course on matroids, and parts of Chapter VII and Chapter
VIII as a course on transversal theory and the major existence resuits. The
exercises have been graded. Unmarked exercises can be solved without a great deal
of effort; more difficult ones are marked with an asterisk (*). The symbol — indi-
cates that the exercise is particularly helpful or interesting, but in no instance is the
statement or the solution of an exercise necessary to the development of the
subject. The references given at the end are, of course, by no means exhaustive;
usually they have been included because they were used in one way or another in
the preparation of the text. Books are indicated by an asterisk.

The German version of the present book appeared in two volumes—Kombi-
natorik I. Grundlagen und Zihitheorie; and I1. Matroide und Transversaltheorie—
as Springer Hochschultexts. Combining these two parts has been a2 more for-
midable task than I originally thought. Most of the material has been reorganized,
with the major changes appearing in Chapter VIII due to many new results
obtained in the last few years.

[ had the opportunity of working as a research associate at the Department of
Statistics of the University of North Carolina in the Combinatorial Year program
1968-1970. It was during this time that I first planned to write this book. Of the
many people who have encouraged me since and furthered this work, | owe special
thanksto G.-C. Rota, R. C. Bose,and T. A. Dowling for many hours of discussion ;
to H. Wielandt, H. Salzmann, and R. Baer for their constant support ; to R. Weiss,
G. Prins, R. H. Schulz, J. Schoene, and W. Mader, who read all or part of the
manuscript; and finally to M. Barrett for her impeccable typing.

It is my hope that 1 have been able to record some of the many important
changes that combinatorics has undergone in recent years while retaining its
origins as an intuitively appealing mathematical pleasure.

Berlin M. Aigner
September 1979
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Preliminaries

It seems convenient to list at the outset a few items that will be used throughout
the book.

1. Sets

We use the symbols N, Z, Q, R, and C for the basic number systems, and set
No =1{0,1,2,...}, N, = {1, 2, ..., n}; in chapter III the notation n for N, is also
used. ;; is the Kronecker symbol; id), stands for the identity mapping of a set M
onto itself and 2* for the power set of M. The cardinality of a set M is denoted by
. IM]and we set | M| = oo whenever M is infinite. For any set M we use the symbol
M* for the cartesian product, M* = {(a,, ..., a,): a;€ M}, and M™ for the family
of k-subsets of M, M® = {4 < M:|A| = k}. A finite set M with |[M|=n is
called an n-set. To define a set or a term we use := or <.
The following rules are the basic tools for enumeration:

(i) Rule of Equality: If N and R are finite sets and if there exists a bijection
between them, then {N| = |R|;

(ii) Rule of Sums: If {A;:i€ I} is a finite family of finite pairwise disjoint sets,

then || )ie; 4il = ziel |4l . . . .

(iti) Rule of Products: If {A;zi eI} is a finite family of finite sets, then for the
cartesian product [ ie; 4i, 1] [ies Ail = [Tics 14il-

We use the symbols 4 © Bor U,-E 1 A; to indicate that the sets involved are disjoint.

A multiset on S is a set S together witha functionr: § — N (giving the multiplicity
of the elements of S). A convenient notation for a multiset kon Sisk = {a**:a e S}
with k, := r(a), a € S. The usual notions for sets can be carried over to multisets.
For instance, if k = {a**:a€ S} and | = {a'*:a€ S} then

kS ek, <, forall ae€s,
knl:= {gmmteld: g€ S},

kul:= {gmxtkald: g S},

Clearly, the family of multisets on a set S forms a lattice under inclusion; further-
more, this lattice is complete.
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2. Graphs

An undirected graph G(V, E) consists of 2 non-empty set V, called the vertex-set
and a multiset E of unordered pairs {a, b} from V, called the edge-set. A simple
graph is a graph that contains no loops {a, a} and no parallel edges {a, b}, {a, b},
i, in which E € V@ is an ordinary set. A directed graph or digraph G(V, E)
is a non-empty set V of vertices and a muitiset E of ordered pairs (a, b) from V.
The elements of E are now called arrows or directed edges. An orientation of an
undirected graph G(V, E) is a rule which designates for each edge k = {a, b} a
direction (a, b); we then write a = k™, b = k*. A graph is finite if both V and E
are finite.

Except for the definition of a graph itself the terminology follows closely that
of Harary [1]. (There, a graph means what we call a simple graph.) The reader is
advised to consult chapter 2 in Harary’s book for any term not previously defined.
We shall, however, redefine most of the notions when they first appear, except for
the most basic ones such as connected graph, path, circuit, etc. Whenever we
simply use the term “graph™ we always mean “undirected graph.”

Two graphs G(V, E) and G'(V', E') are isomorphic if these exists a bijection
¢: V- V' such that {a,b} e E and {¢(a), #(b)} € E' appear in E and E with
equal multiplicity. The degree y(v) of a vertex v is the number of edges incident
with v where we count loops {v, v} twice. Hénce for a finite graph G(V, E) we
always have } ., (v) = 2|E|.

Two important types of graphs are the complete graphs K, and the complete
bipartite graphs K, ,. K, is a simple graph with n vertices with any two vertices
joined by an edge. K,, , is a simple graph whose vertex-set is the union of two
disjoint sets of cardinality m and n respectively, with two vertices being joined if
and only if they are in different sets. A bipartite graph is any subgraph of a complete
bipartite graph. We shall often denote a bipartite graph by G(V, u V;, E) to
indicate the defining vertex-sets V;, V,, where every edge joins a vertex in ¥,
with a vertex in V,. The following rule is the single most useful tool in enumeration.

(iv) Rule of *counting in two ways”: Let G(V, u V,, E) be a finite bipartite
graph with defining vertex-sets V| and V,. Then

2w =) yw)  (=|E).

veV, veV;

A bipartite graph G(V; u V,, E) can also be regarded as a directed graph with all
edges directed from V, to V,. In other words, bipartite graphs with defining
vertex-sets V, and V, can be identified with binary relations between V| and V,.
For this reason, we often use the letter R for the edge-set and in G(V, u V,, R) skt
R(A):=Jsca {yeVyi(a,y)eR} for AcV, and similarly R(B):=
(Uses {x€ Vi1 (x, b)e R} for B < V;,. For a singleton subset {a}, we simply write
R(a).

Bipartite graphs have two other important equivalent interpretations. A set
system (S, A) is a set S together with a family U of not necessarily distinct subsets
of S. Any set system (S, A) gives rise to its incidence graph G(S v U, R) where
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(p, A) € R:=>pe A. Conversely, any bipartite graph G(S U ¥, R) yields a set
system (S, U) by identifying 4 € U with the set R(A4) € S.

A set system (S, ) can also be described by a 0, I-matrix M = [m,;] whose
rows and columns are indexed by S and U respectively, withm;; = 1 or 0 depending
on whether p; € A;or p; ¢ A;. M is called the incidence matrix of (S, ). Conversely,
any 0, 1-matrix gives rise to a set system by the reverse procedure.

Example.

|
A,

2 . 1000
2

3 $=1{1,23,4,5) (1, (') ? (,)
A =

4 3 Q‘[ - {{1»214}7 {2a 5}7 {3}1 {314}} 1 0 0 ]
A, 01 00

5

S p. |

Bipartite graph Set system 0, l-matrix

A graph which has no non-trivial circuits is called a forest. A connected forest
is called a tree.

3. Posets

We employ the usual terminology as, for instance, in Birkhoff [1]. If P is a poset
then P* denotes the dual poset obtained by inverting the order relation of P. If P
contains a unique minimal e¢lement, then this element is called the 0-element,
denoted by 0; similarly, a unique maximal element is called the 1-element, denoted
by 1. We say, b covers a or a is covered by b, denoted by a <-b, if a < b, and
a < x < bimplies x = b. The atoms are the elements covering 0 (if 0 exists); the
co-atoms are the elements covered by 1. We most often represent a poset P by its
diagram, which is the directed graph on P with an arrow from a to b if and only if
b covers a. Whenever possible, we draw a diagram from the bottom up and omit
the arrows. A chain is a poset in which any two elements are comparable. For the
chain {a, < a, < --* < a,} we often use the short-hand notation {a,, ..., a,} .-
The length of a chain is one less than its cardinality. The length l{(a) of ae P is
the length of the longest chain in P with a as last element. An antichain is a poset
in which any two elements are incomparable. A chain in a poset P is called un-
refinable if any element of the chain is covered by its successor. If L is a lattice
then a non-empty subset M is called a sublattice if x, ye M imply x A ye M,
x v y€ M. A subset M © L may be a lattice in its own right under the induced
order relation, but we reserve the term sublattice for the former situation. An
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interval of a poset P is any set [a, b]:= {xeP:a < x < b} for a,be P. The
product []ic; P; of posets P; is the poset on the cartesian product with the co-
ordinatewise order relation. The product of lattices is again a lattice. The sum
Yier L; of lattices, each L, containing a 0-element, is the sublattice of the product
[lier L: consisting of those vectors with only a finite number of coordinates
different from 0. Ny, N and N, are assumed to be endowed with the natural ordering
unless otherwise stated. A complete lattice is one in which any non-empty subset
has an infimum and a supremum. If W is a word which contains only elements of a
lattice L and the symbols A, v, < and (,), then we obtain the dual expression W*
by exchanging A with v and < with >. The validity of W for all variables x;
implies the validity of W* for all variables x;. This is called the principle of duality
in lattices. W is called self-dual if W* = W.

The reader is referred to Crawley-Dilworth [1, ch. 1 and 2] for all other terms
not previously defined.

4. Miscellaneous Notation
(i) Leta e R. Then [a] and [a] denote the largest integer <a and the smallest

integer >a, respectively.
(ii) We sometimes use the symbol #{---} to denote the cardinality of the

set {---}. ‘ )
(iit) By a partition of a set S we mean a disjoint union § = U,-e, A;. We also
use the notation S = A,|A4,|--- to indicate a partition. The sets A; are

assumed to be non-empty unless otherwise stated.

(iv) To facilitate the summation notation, we shall often indicate the
summation index by a dot underneath. For instance, let M = [m;;] be an
n x n-matrix. Then Y, ,cicamy=my; + my; + -+ m;_, ;.
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Mappings

The starting point for all our considerations is the following: We are given two
sets, usually denoted by N and R, and a mapping f: N — R satisfying certain
conditions. The triple (N, R, f) is called a morphism. Our program is to arrange
mappings into classes, and then to count and order the resulting classes of mappings.

Accordingly, our first task will be to collect conditions of combinatorial
significance which we want to impose on the mappings—and this is the content
of the present chapter.

1. Classes of Mappings

Let (N, R, f) be a morphism. N and R will, in most instances, be finite sets, and
we shall use the letters n = |N| and r = |R|, respectively, for their cardinalities.
A common way to describe [ is by the expression

D) a e
= ae N .
1= ) @
We call this the standard representation of f: N — R. Most of the time the domain

N will be totally ordered in some natural way, but, of course, any ordering is
possible. For example, the three expressions

1 23 4\ /1 43 2% (43 12
a ab b/’ka b b a/’\b b a a
all represent the same mapping.
A. Classification

With f: N — R we associate the image im(f) and the kernel ker(f):
im(f):= ) f(a)

aeN

kere(f):= ) S'@).

beim(f)

" For simplicity we write [~ '(b) instead of the more precise f~'({b}). Similar abbreviations
will be used later,e.g.,. A U gfor 4 U {q}.



6 1. Mappings
Thus, the kernel of f is the partition of N induced by the equivalence relation
axd:=<f(a) = f(ad) (a, a’ € N).

It is convenient to postulate the empty mapping {5 with im( f) = & and undefined
kernel.

The mapping f:N — R is called surjective if im(f) = R, and injective if
ker(f) = 0 (in the lattice of partitions of N —see section 2.B), i.e., if a # a’ =
Sf(a) # f(a) for all a, a’' € N. Mappings that are both surjective and injective are
called bijective.

With these definitions we obtain a first set of classes of mappings:

Map(N, R):= {f: N — R, f arbitrary},
Sur(N, R):= {f: N — R, f surjective},
Inj(N, R):= {f: N = R, [injective},
Bij(N, R):= {/: N — R, f bijective}.

When N and R are both finite sets, we have the following obvious but important
rules concerning their cardinalities:

Sur(N, R) # & ={N| > |R|,
Inj(N, R) # & = |N| < |R],
Bij(N, R) # & = |N| = |R]|.

For a mapping f: N — N of a finite set N into itself the notions surjective, in-
jective, and bijective coincide. For infinite sets this is no longer true. For example,
/N = N, f(k) = 2k, is injective, but not surjective.

Suppose that both sets N and R are endowed with a partial order. f € Map(N, R)
is called monotone if it preserves the order relation, i.e., il a <yb = f(a) <z f(b)
for all aq, be N, and it is called antitone if a <y b= f(a) 2 f(b) for all aq, be N.
The family of monotone mappings constitutes another important class:

Mon(N, R):= {f: N — R, f monotone}.

Observe that if N is totally unordered we simply have Mon(N, R) = Map(N, R),
regardless of the order on R. Any monotone or antitone mapping maps chains onto
chains.

Example. Let N = {l <2 < 3 < 4}and

-C.

k=6

°\/°‘

! 2 3 4)is monotone, whereas (§ 1 2 ¢)is antitone.
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Another well-known class of mappings arises in the context of algebra. Suppose
there are algebraic systems of the same type defined on N and R, e.g., groups,
rings, or vector spaces over the same scalar domain. A mapping f: N — R which
preserves all operations is called a homomorphism, and we denote the class of all
homomorphisms from N into R by

Hom(N, R):= {f: N — R, f homomorphism}.

By combining the classes we have encountered so far it is clear what we mean by a
surjective monotone mapping or an injective homomorphism, etc. We shall see
that most of the combinatorial counting problems can be phrased in terms of one
or more of these classes.

B. Representation

There are two particularly useful and suggestive interpretations of a morphism
(N, R, [). Let N be totally ordered by some fixed order. We regard the elements of
N as places of a word and say the place i€ N is occupied by the lerter [e R if
(i) = |. The mapping is thus regarded as a word of length n with letters from the
alphabet R, indexed by N. Now order the elements of R by some total order and
regard them as boxes. If f(a) = b we say that the object a € N has been sorted
into the box b, or that the box b contains a. In this way we mterpret S:N—>Ras
an occupancy pattern of the boxes R by the objects N.

In summary:

mapping from N into R;
f:N = R =4 word in R indexed by N;
occupancy of R by N.

Suppose N = {a,, a,, ..., a,} < is totally ordered. Then the mapping

f= (j(a.) (an)>

can be unambiguously represented by the word f(a,)f(a;)... f(a,). We call
this the word representation of f (relative to the given total order on N). Similarly, if
R = {b,,..., b} is totally ordered then f~'(b)) ¥ f~ (b)) U --- U f1(b,) is
called the occupancy representation of f. In most cases N or R will be the set
{1,...,n}or{l,..., r} endowed with the natural order.

Example. Let N = {1 < 2 < 3}, R = {a < b < ¢}. We list the set Map(N, R) by
giving the word representation of its members:

aaa acc aba caa cbc ach
aab ccc baa cac cchb bac
abb bbc bab cca cab
bbb bec bba beb bca
aac abc aca cbb cha.
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The monotone mappings are those in the first two columns, the last column
together with abc gives the bijective mappings. Hence we have

IMap(N, R)| = 27, | Bij(N, R)| = 6, |Mon(N, R)| = 10.
The reader may set up a similar list using the occupancy representation.

The terms introduced in the beginning can now be interpreted as special words
or occupancies, €.g.,a mapping f € Inj(N, R)is called a strict word and f € Sur(N, R)
a full occupancy. Let N ={1 <2 <---<n} and R be an arbitrary poset.
Mon(N, R) consists of all words b,b, ... b, in R with b, < b, < --- < b,. Hence
we speak of Mon(N, R) as the class of monotone words. 1f, in particular, R is
totally ordered, then the monotone words of length n are precisely the multisets
in R of cardinality n, and it follows that there are just as many monotone words of
length nin R as n-multisets in R. See the example above where the 3-multisets of R
are listed in the first two columns. If we restrict ourselves to strict monotone words
we obtain the family of all subsets of R of cardinality n.

EXERCISES [.]

1. Let f: N = R. Prove:
(i) im(S) minimal < ker(/) maximal.
(ii) im(f) maximal and | N| < |R]| = f injective.
(iii) im(f) maximal and | N| > |R| = [ surjective.
(iv) im(f) maximal and | N| = |R| = f bijective.
2. Show that for f: N - N with | N| < oo the concepts injective, surjective,
and bijective are equivalent, but that this is not true if N is infinite.

— 3. Let N and R _ be posets. Describe Mon(N, R) when N _ is an antichain and
when R is an antichain.

— 4. Show that there are precisely 5 non-isomorphic posets with 3 elements and
16 with 4 elements. How many are isomorphic to their dual? How many
are lattices?

— 5. Show that a directed graph 5( V, E) is the diagram of some poset on V if
and only if for any directed path aq — a, --- — g, of length t > 2 we always
have (aq, a,) ¢ E and (a,, ay) ¢ E.

6. Show that a poset is a chain if and only if all subposets are lattices.

7. Find a bijection from [4(1)]? to €(3) which is monotone but preserves
neither infima or suprema, where €(n) is the chain of length n.

- 8 Let N=1{1,2,3l, and R={1,2,34}.. Compute |Map(N, R)|,
[Inj(N, R)|, |Sur(N, R){, and |Mon(N, R)|.

9. Let G and H be groups. Prove that a partition n of G is the kernel of a
homomorphism f: G — H if and only if the following holds: If a and a’
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lie in a common block of n and similarly for b and b’ thena-band a' - &
also lie in a common block of n. Deduce from this the homomorphism
theorem for groups.

10. Let N and R both be cyclic groups of order 9. What is |Hom(N, R)|?

—11. Suppose V and W are vector spaces over GF(2) of dimension m and n,
respectively. Compute | Hom(V, W)|.

—12. In how many ways can we sort the elements 1, 2, 3 into the boxes A, B if,
in addition, we require that the boxes are linearly ordered ? For example,

1,230
A B
is different from
1,3,2(d:
A B

similarly 2|1, 3 is different from 2|3, 1. (Answer: 24)

—13. Suppose v = }?.,/; — b + 1 objects are sorted into b boxes B,, ..., B,.
Show that for some i, box B; contains at least [; objects. This is called the
** pigeon hole principle.”

14. By using ex. 13 prove that a sequence of mn + 1 distinct integers contains
either an increasing subsequence of length greater than m or a decreasing
subsequence of length greater than n.

15. Prove that there are two people in New York City who have precisely the
same number of hairs on their head. (Hint: Use the pigeon hole principle.)

2. Fundamental Orders

We mentioned at the outset that our main object was to count and order classes of
mappings. Later on we shall see that a good many of the counting problems consist
in evaluating certain coefficients of the underlying order structure. So, let us first
find out what order relations arise in connection with our general set-up.

A. Inclusion

First we may compare mappings by looking at their images. Let f, g be mappings
with im(f) € R, im(g) € R. Regarding im(f), im(g) as multisets {b" '®!: be R},
{b” ' p e R}, we obtain a natural relation

fege|f \b)i<ig b) forallbeR.

This inclusion relation < is obviously reflexive and transitive but, in general, not
antisymmetric since it disregards the nature of the elements which are mapped into



