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Preface to the Second Edition

The 20 years since the publication of this book have been an era of continuing
growth and development in the field of algebraic topology. New generations
of young mathematicians have been trained, and classical problems have
been solved, particularly through the application of geometry and knot
theory. Diverse new resources for introductory coursework have appeared,
but there is persistent interest in an intuitive treatment of the basic ideas.

This second edition has been expanded through the addition of a chapter
on covering spaces. By analysis of the lifting problem it introduces the funda-
mental group and explores its properties, including Van Kampen’s Theorem
and the relationship with the first homology group. It has been inserted after
the third chapter since it uses some definitions and results included prior to
that point. However, much of the material is directly accessible from the same
background as Chapter 1, so there would be some flexibility in how these
topics are integrated into a course.

The Bibliography has been supplemented by the addition of selected books
and historical articles that have appeared since 1973.
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Preface to the First Edition

During the past twenty-five years the field of algebraic topology has experi-
enced a period of phenomenal growth and development. Along with the
increasing number of students and researchers in the field and the expanding
areas of knowledge have come new applications of the techniques and results
of algebraic topology in other branches of mathematics. As a result there has
been a growing demand for an introductory course in algebraic topology
for students in algebra, geometry, and analysis, as well as for those planning
further work in topology.

This book is designed as a text for such a course as well as a source for
individual reading and study. [ts purpose is to present as clearly and con-
cisely as possible the basic techniques and applications of homology theory.
The subject matter includes singular homology theory, attaching spaces and
finitt. CW complexes, cellular homology, the Eilenberg—Steenrod axioms,
cohomology, products, and duality and fixed-point theory for topological
manifolds. The treatment is highly intuitive with many figures to increase the
geometric understanding. Generalities have been avoided whenever it was
felt that they might obscure the essential concepts.

Although the prerequisites are limited to basic algebra (abelian groups)
and general topology (compact Hausdorff spaces), a number of the classical
applications of algebraic topology are given in the first chapter. Rather than
devoting an initial chapter to homological algebra, these concepts have been
integrated into the text so that the motivation for the constructions is more
apparent. Similarly the exercises have been spread throughout in order to
exploit techniques or reinforce concepts.

At the close of the book there are three bibliographical lists. The first
includes all works referenced in the text. The second is an extensive list of



X Preface to the First Edition

books and notes in algebraic topology and related fields, and the third is a
similar list of survey and expository articles. It was felt that these would
best serve the student, teacher, and reader in offering accessible sources for
further reading and study.
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CHAPTER 1
Singular Homology Theory

The purpose of this chapter is to introduce the singular homology theory of
an arbitrary topological space. Following the definitions and a proof of
homotopy invariance, the essential computational tool (Theorem 1.14) is
stated. Its proof is deferred to Appendix I so that the exposition need not be

“interrupted by its involved constructions. The Mayer—Vietoris sequence is
noted as an immediate corollary of this theorem, and then applied to com-
pute the homology groups of spheres. These results are applied to prove a
number of classical theorems: the nonretractibility of a disk onto its bound-
ary, the Brouwer fixed-point theorem, the nonexistence of vector fields on
even-dimensional spheres, the Jordan—Brouwer separation theorem and the
Brouwer theorem on the invariance of domain.

If x and y are points in R", define the segment from x to y to be {(1 — t)x +
tyl0 <t < 1}. A subset C < R" is convex if, given x and y in C, the segment
from x to y lies entirely in C. Note that an arbitrary intersection of convex
sets is convex. If 4 < R", the convex hull of A is the intersection of all convex
sets in R” which contain A.

A p-simplex s in R" is the convex hull of a collection of (p + 1) points
{x0s-...,X,} in R” in which x; — x,, ..., X, — X form a linearly independent
set. Note that this is independent of the designation of which point is x,.

1.1 Proposition. Let {x,,...,x,} = R". Then the following are equivalent:

(@) x, — xg,..., X, — Xq are linearly independent;
®) if Y six; =3 t;x;and Y s; =Y t;, thens; = ¢, fori=0,...,p.
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Proof. (a) = (b): If Y s;x, =) t;x;and Y s; = ) 1, then

0= 'go (i — t)x; = ,-Zp:o (si — t.)x; — [i (s; — ti):l Xo

i=0
?
= ; (s; — t:Hx; — xo).

By the linear independence of x; — x,, ..., x, — X, it follows that s; = ¢, for
i =1,..., p. Finally, this implies s, = t, since 3.5, = Y ¢,.

(b)=(a) If Z."’:l (t:){x; — xo) = O, then Zf:x Lix; = (Z.P=1 t;)xo and by (b)
the coefficients t,, ..., t, must all be zero. This proves linear independence.

a

Let s be a p-simplex in R" and consider the set of all points of the form
toXo + t; Xy + - + t,x,, where Y t; = 1 and t; > O for each i. Note that this
is the convex hull of the set {x,,...,x,} and hence from Proposition 1.1 we
have the following:

1.2 Proposition. If the p-simplex s is the convex hull of {x,,...,x,}, then every
point of s has a distinct unique representation in the form Y t;x;, where t; > 0
foralliandy 1, =1, ]

The points x; are the vertices of s. This proposition allows us to associate

the points of s with (p + 1)-tuples (¢o,1,,...,t,) with a suitable choice of the
coordinates 1.

EXERCISE 1. Let y be a point in s. Then y is a vertex of s if and only if y is not an interior
point of any segment lying in s.

If the vertices of s have been given a specific order, then s is an ordered
simplex. So let s be an ordered simplex with vertices x,, X, ..., x,. Define o,
to be the set of all points (to,t,,...,t,) € R?*' with 3 ;=1 and ¢, > 0 for
each i. If a function

Sio,—s
is given by f(to,....t,) = Zt,-x,-, then f is continuous. Moreover, from the
uniqueness of representations and the fact that ¢, and s are compact
Hausdorff spaces it follows that f is a homeomorphism. Thus, each ordered
p-simplex is a natural homeomorphic image of o,. Note that o, is a p-simplex
with vertices x5 =(1,0,...,0), x; =(0,1,...,0), ..., x,=(0,...,0,1). g, is
called the standard p-simplex with natural ordering.

Let X be a topological space. A singular p-simplex in X is a continuous
function

¢.0,— X,
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Note that the singular O-simplices may be identified with the points of X,
the singular 1-simplices with the paths in X, and so forth.

If ¢ is a singular p-simplex and i is an integer with 0 < i < p, define 3,(¢), a
singular (p — I)-simplex in X, by

0itos- sty y) = Blto,ty,. . 0,4, 0,8, 1, )

0,0 is the ith face of ¢.

For example, let ¢ be a singular 2-simplex in X (Figure 1.1). Then, d, ¢ is
given by the composition shown in Figure 1.2. That is, to compute d,¢ we
embed o,_, into 6, opposite the ith vertex, using the usual ordering of ver-
tices, and then go into X via ¢.

If f: X - Y is a continuous function and ¢ is a singular p-simplex in X,
define a singular p-simplex f,(¢)in Y by f,(#) = f o . Note thatifg: Y - W
is continuous and id: X — X is the identity map,

(gof)sl@)=g.(f4(#) and  (id),(¢) = ¢.

An abelian group G is free if there exists a subset 4 = G such that every
element g in G has a unique representation

g = Z le’x,-

xeAd
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where n, is an integer and equal to zero for all but finitely many x in A. The
set A is a basis for G.

Given an arbitrary set A we may construct a free abelian group with basis
A in the following manner. Let F(A) be the set of all functions f from A into
the integers such that f(x) # O for only a finite number of elements of A.
Define an operation in F(4) by (f + g)(x) = f(x) + g(x). Then F(A) is an
abelian group. For any a € A4 define a function f, in F(A4) by
ifx=a

1
S = {0 otherwise.
Then { f,|a € A} is a basis for F(A) as a free abelian group. Identifying a with
£, completes the construction.
For example, let G = {(n,, n,,...)|n; is an integer, eventually 0}. Then G is
an abelian group under coordinatewise addition, and furthermore it is free
with basis

(1,0,...),(0,1,0,...),(0,0,1,0,...), ...

For convenience we say that if G = 0, then G is a free abelian group with
empty basis.

Note that if G is free abelian with basis 4 and H is an abelian group, then
every function f: A — H can be uniquely extended to a homomorphism f:
G- H.

If X is a topological space define S,(X) to be the frec abelian group whose
basis is the set of all singular n-simplices of X. An element of S,(X) is called a
singular n-chain of X and has the form

z"¢'¢,
é

where n, is an integer, equal to zero for all but a finite number of ¢.

Since the ith face operator g; is a function from the set of singular n-
simplices to the set of singular (n — 1)-simplices, there is a unique extension
to a homomorphism

al': Sn(x) g n—l(X)

given by 8,3 n, ¢) = Y n,-0;¢. Define the boundary operator to by the
homomorphism

0: 8u(X) — S, (X)
given by
0=00—0,+ 8+ -+ (=10, =Y (—1)d.
i=o
1.3 Proposition. The composition 8 o 3 in
$u(X) 5> 8,1 (X) 5 S, - 2(X)

Is zero.
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EXERCISE 2. Prove Proposition 1.3. O

Geometrically this statement merely says that the boundary of any n-chain
is an (n — 1)-chain having no boundary. It is this basic property which leads
to the definition of the homology groups. An element ¢ € S,(X) is an n-cycle
if é(c) = 0. An element d € S,(X) is an n-boundary if d = d(e) for some e €
S, +1(X). Since 9 is a homomorphism, its kernel, the set of all n-cycles, is a
subgroup of S,(X) denoted by Z,(X). Similarly the image of J in S,(X) is the
subgroup B,(X) of all n-boundaries.

Note that Proposition 1.3 implies that B(X) € Z,(X) is a subgroup. The
quotient group

H,(X) = Z,(X)/B,(X)

is the nth singular homology group of X. The geometric motivation for this
algebraic construction is evident; the objects we wish to study are cycles in
topological spaces. However, in using singular cycles, the collection of all
such is too vast to be effectively studied. The natural approach is then to
restrict our attention to equivalence classes of cycles under the relation that
two cycles are equivalent if their difference forms a boundary of a chain of
one dimension higher.

This algebraic technique is a standard construction in homological alge-
bra. A graded (abelian) group G is a collection of abelian groups {G,} indexed
by the integers with componentwise operation. If G and G’ are graded groups,
a homomorphism

[:G-G
is a collection of homomorphisms { f;}, where
JiGi—> Gy,

for some fixed integer r. r is then called the degree of f. A subgroup H < G of
a graded group is a graded group {H;} where H, is a subgroup of G;. The
quotient group G/H is the graded group {G,/H,}.
A chain complex is a sequence of abelian groups and homomorphisms
...i':‘,cni,cn_l'ii...

in which the composition é,_, o 6, = 0 for each n. Equivalently a chain com-
plex is a graded group C = {C;} together with a homomorphism ¢: C — C of
degree — I such that d o d = 0. If C and C’ are chain complexes with bound-
ary operators d and @', a chain map from C to C’ is a homomorphism

. C->C

of degree zero such that & o @, = @, _, o & for each n. (Note that the require-
ment that ® have degree zero is unnecessary. It is stated here only as a
convenience since all chain maps we will consider have this property.)
Denoting by Z,(C) and B,(C) the kernel and image of 3, respectively, the
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homology of C is the graded group
H,(C) = Z,(C)/B,(C).
Note that if @ is a chain map,
®Z,(C)<sZ,(C) and DB, (O) <= B,(C).
Therefore, ® induces a homomorphism on homology groups
D, H (C)—> H(C).

In this sense the graded group S, (X) = {S;(X)} becomes a chain complex
under the boundary operator J, so that the homology group of X is the
homology of this chain complex. If f: X — Y is a continuous function and ¢
is a singular n-simplex in X, there is the singular n-simplex f,(¢) = fo g in Y.
This extends uniquely to a homorphism

So: Sy(X) = S,(Y) for each n.

To show that f, is a chain map from S,(X) to §,(Y) it must be checked that
the following rectangle commutes:

S.(X) —L. s(v)

S,.1(X) =L 5, (V)

First note that it is sufficient to check that this is true on singular n-simplices
@, and second, observe that it is sufficient to show &, f,(¢) = f, 0:(¢). Now

J40d@) o tay) = f(Blto, ... 11, 0,8, 8, y)

and
O0ifs@to,- . tay) = [o(@Nto,. .. 1,1, 0,858, y)
= f(@(tos- 2 ti=1:0,tis .ty 1))

Thus, f,: S, (X)— S,(Y) is a chain map and there is induced a homomor-
phism of degree zero

Syt Hy(X) - H (Y).

Note that this is suitably functorial in the sense that for g: Y - W a continu-
ous function and id: X — X the identity, (g o f), = g, o f, and id, is the
identity homomorphism.

As a first example take X = point. Then for each p > 0 there exists a
unique singular p-simplex ¢,: 6, — X. Note further that for p >0, 9,4, =
#,-:. So consider the chain complex

<= 8,(pt) = S, (pt) — So(pt) — 0.
Each S,(pt) is an infinite cyclic group generated by ¢,. The boundary opera-



